5 % STEPHEN PMORSE

thedB
|

= Mo &5

Its Architecture,
System Design,
and Programming

HAYDEN

SOBG |

The 8086 Primer

AN INTRODUCTION TO ITS
ARCHITECTURE, SYSTEM DESIGN,
AND PROGRAMMING

The Hayden Microcomputer Series

CONSUMER'S GUIDE TO PERSONAL COMPUTING AND MICROCOMPUTERS*
Stephen J. Freiberger and Paul Chew, Jr.

THE FIRST BOOK OF KIMt
Jim Butterfield, Stan Ockers, and Eric Rehnke

GAME PLAYING WITH BASIC
Donald D. Spencer

STIMULATING SIMULATIONS
C. W. Engel

SMALL COMPUTER SYSTEMS HANDBOOKY
Sol Libes

HOW TO BUILD A COMPUTER-CONTROLLED ROBOTt
Tod Lootbourrow

HOW TO PROFIT FROM YOUR PERSONAL COMPUTER*
Ted Lewis

THE MIND APPLIANCE: HOME COMPUTER APPLICATIONS*
Ted Lewis

THE 6800 MICROPROCESSOR: A SELF-STUDY COURSE WITH APPLICATIONS*
Lance A. Leventhal

THE FIRST BOOK OF MICROCOMPUTERS
Robert Moody

MICROCOMPUTERS AND THE 3 R's: A Guide for Teachers*
Christine Doerr

DES!GNING MICROCOMPUTER SYSTEMS*
Udo W. Pooch and Rahul Chattergy

THE 8086 PRIMER: AN INTRODUCTION TO ITS ARCHITECTURE,
SYSTEM DESIGN, AND PROGRAMMING

Stephen P. Morse

*Consulting Editor: Ted Lewis, Oregon State University

tConsulting Editor: Sol Libes, Amateur Computer Group of New Jersey and
Union Technical Institute

The 8086 Primer

AN INTRODUCTION TO ITS
ARCHITECTURE, SYSTEM DESIGN,
AND PROGRAMMING

STEPHEN P. MORSE

]

HAYDEN BOOK COMPANY, INC.
Rochelle Park, New Jersey

To Anita

Library of Congress Cataloging in Publication Data

Morse, Stephen P.
The 8086 primer.

Includes index.

1. INTEL 8086 (Computer). |. Title.
QA76.8.1292M67 001.6'4'04 79-23932
ISBN 0-8104-5165-4

Instruction Mnemonics copyright © Intel Corporation, 1978.

Copyright © 1980 by HAYDEN BOOK COMPANY, INC. All rights reserved.
No part of this book may be reprinted, or reproduced, or utilized in any
form or by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying and recording, or in any infor-
mation storage and retrieval system, without permission in writing from

the Publisher.

Printed in the United States of America

1 2 3 4 5 6 7 8 9 PRINTING

80 81 82 83 84 85 86 87 88 YEAR

Preface

This book is an introduction to the 8086 microprocessor. It describes
the 8086 architecture, shows how to design a system incorporating an 8086,
and discusses how to write programs that run on the 8086. Since the treat-
ment is detailed and relies heavily on examples and illustrations, it can be
useful to both the computer novice and the computer professional.

The book is composed of three main topics—8086 architecture, 8086
system design, and 8086 programming. The architecture is broken down
into 8086 machine organization (register and memory structure, addressing
modes), covered in Chap. 2, and 8086 instruction set, covered in Chap. 3.
The 8086 system design in Chap. 4 shows how to put the 8086 micro-
processor together with other components to form a complete microcom-
puter system. Programming is divided into 8086 assembly-language pro-
gramming (Chap.5) and 8086 high-level-language programming (Chap. 6).

The first chapter is intended to bring a heterogeneous group of readers
up to a common level of knowledge about computers and microcomputers.
If you already have that knowledge and you’re anxious to learn about the
8086, skip ahead to Chap. 2.

I am indebted to Bruce Ravenel, a co-architect of the 8086, for his
many ideas and contributions relating to this text. Without his initial en-
couragement, I might never have attempted writing a book.

I owe special thanks to Deborah McKenna for the many hours she
spent typing the manuscript and for having the patience to put up with all
the changes I kept making. Others who contributed to the manuscript
preparation are Dan Lomibao (artwork) and Susie Viola (typing).

And, most important, let me thank the people who contributed many
hours of their own time to reading the drafts and finding my numerous
errors. They are John Crawford, Rodney Farrow, Joseph Friedrich, Stephen
Hanna, Jeffrey Katz, Phillip Kaufman, Alice Morse (my mother), John
Palmer, Samuel Quiring, Andrew Rabinowitz, J oseph Sharp, and Thomas
Wilcox.

STEPHEN P. MORSE
San Francisco, California

Foreword

In 1972, Intel announced the 8008, the first commercially available
8-bit microprocessor, which ultimately led to the 8080, the industry standard
microprocessor. When they were introduced, some observers wondered what
these new gadgets could be used for. To date, over three million have been
used, not counting support and peripheral circuits, for thousands of different
uses from telephone switching systems to TV games.

Since 1972, the microprocessor revolution has opened a multitude of
component and system applications, from one-device engine control to
single-board computers for complex industrial control tasks. In 1978, Intel
introduced the first high-performance 16-bit microprocessor, the 8086.

The thrust of the 8086 has always been to help users get their products
to market faster using compatible software, peripheral components, and
system support. In this “family” concept, the CPU is the heart of a system,
extending to interfaces, memories, peripherals, communications, computer
systems, and software. This 8086 family consists of several CPUs as well as
complete support for bus control. For example, Intel provides the 8088
CPU, which utilizes the same 16-bit internal architecture as the 8086 but
has an external 8-bit bus, thus bridging the gap between 8-bit and 16-bit
processors. The 8089 is designed as a special high-performance I/O proces-
sor for offloading and processing in parallel the host CPU (also available is
the 8086-2, an 8-MHz version of the standard 5-MHz 8086). The 8086
family was designed as a multiprocessing family such that a system consisting
of multiple processors is easily implemented, supported not only by the
8086 family of CPUs but also by “family” bus support circuitry. The 8289
Bus Arbiter, in conjunction with the 8288 Bus Controller, provides a power-
ful and efficient means of arbitrating multiple CPUs residing on a shared
system bus. Whether designing a single CPU system or a high-performance
multiple processor system, the 8086 family supports the “total system”
solution.

At first glance, the complexity of 16-bit microprocessor system design
seems to govern the choice between diverse component products. The key
issue is actually synergism. The ease of use among Intel products offers
building-block solutions to entire system design problems. One can use the
same components for designing a single microprocessor-based system with

one common bus or a very powerful multiple processor system with a host of
shared resources.

With the common thread of compatible architecture, user language
(like PLM or PASCAL), and a series of development systems that support
each and every programmable device, Intel has endeavored to ease the
design task for engineers working on microprocessor-based systems, both
large and small.

We recommend Stephen Morse’s book to those interested in using the
16-bit universe as the solution to their design problems.

DAVE GELLATLY
Microprocessor Marketing Manager
Intel Corporation

1.

@

»

Contents

Introduction

Computer Overview, 1

Data Formats, 3

Stacks, 7

8086 Memory Utilization (A Sneak Preview), 8
The Microcomputer Story, 8

. 8086 Machine Organization

Overview, 11

Memory Structure, 12

Memory Segmentation, 13

Input/Output Structure, 15

Register Structure, 16

Instruction Operands and Operand-Addressing Modes, 21
Comments about Operand-Addressing Modes, 28

8086 Instruction Set

Data Transfer Instructions, 32
Arithmetic Instructions, 43

Logical Instructions, 60

String Instructions, 64

Unconditional Transfer Instructions, 72
Conditional Transfer Instructions, 77
Interrupts, 80

Flag Instructions, 88
Synchronization Instructions, 89

A Postscript on Prefixes, 92

Flag Settings, 93

8086 System Design

Bus Structure, 97
Address Latching, 100
Data Amplifying, 100
Measuring Time, 102
Memory Units, 103
Input/Output Ports, 112
Interrupt Servicing, 116
Bigger Systems, 119
Summary, 120

11

32

97

S.

8086 Assembly-Language Programming

Object Code and Source Code, 119
Symbolic Names, 121

A Complete Program, 122
Structure of ASM-86 Programs, 123
Tokens, 125

Expressions, 128

Statements, 131

Directive Statements, 132
Instruction Statements, 144
Examples, 148

In Conclusion, 150

8086 High-Level-Language Programming

Who Needs High-Level Languages?, 151
Structure of PL/M-86 Programs, 153
Tokens, 155

Expressions, 157

Statements, 159

Executable Statements, 160
Declarative Statements, 165
Procedures, 172

Block Structure and Scope, 178
Input and Output, 180

Modular Programming, 181

Tying It All Together, 183

In Conclusion, 185

References

Appendix A: 8086 Instruction Set Summary
Appendix B: 8086 Opcode Space
Appendix C: ASCII Codes

Index

119

151

187
188

193

197

199

Introduction

The aim of this first chapter is to gain a technical and historical perspective
on microcomputers in general and the 8086 in particular. Microcomputers are not
unlike any other computer except in size. So we’ll start by summarizing the
fundamentals of computers and then describe the evolutionary process that led to
the microcomputer. Finally, we’ll show where the 8086 fits into the picture.

Computer Overview

Before we talk about a microcomputer, let’s briefly summarize the notion
of a computer. Besides serving as a review, this section will introduce some of
the terms and concepts used throughout the book.

The basic units that make up a computing system are shown in Fig. 1.1.
Figure 1.2 shows the same system except all the recognizable components are
replaced by impersonal boxes. Let’s examine the behavior of such a system by
focusing on the function of each box.

The role of a computer is to obtain data from an input device, process the
data, and deliver the final results to an output device. The particular processing to

INPUT DEVICE 'UT DEVICE

PROGRAM 4
AREA //
DATA
/ // AREA

-
\ - BLACKBOARD
\

3

\ £
\
\
\ \
\v/ CONTROL \\
UNIT
[Saoes : ——— DATA FLOW
-HO8000—1-—00-
— — —— = CONTROL FLOW

ARITHMETIC
DEVICE

Fig. 1.1 Primitive computing system.
1

2 The 8086 Primer

PROGRAM AREA
~————~ DATA FLOW

MEMORY

==« = g~ CONTROL FLOW

| convroL
L uniT

__1 wstrucTion —
r— DECODER I~ 1I
|
| T T |
! __1 ! |
| r para | i
Y I _AREA Y ¥
MEMORY,
CARD H . LINE
READER 1 RECteTEns. PRINTER
INPUT DEVICE : OUTPUT DEVICE
|
|
! ARITHMETIC
L >4 AND LOGICAL
UNIT

ARITHMETIC
DEVICE

Fig. 1.2 Modern general-purpose computing system.

be done is specified by a list of instructions called the program. The program is
stored in the program area.

The operations of the computer are controlled by a device called a control
unit. The control unit does the following three steps repeatedly:

1. Fetches an instruction from the program area

2. Decodes the instruction to determine what operations are to be per-
formed

3. Executes the instruction by sending control signals to devices that per-
form the operations

The operations that are performed during instruction execution consist of
moving data between devices and performing computations on data within a
device. Computations are performed by the arithmetic device. The data area is
used to supply inputs for the computations and to hold the intermediate results of
the computations.

To see how all this ties together, let’s analyze the execution of a particular
instruction, namely an ‘‘add’’ instruction. The control unit sends a control signal
to the program area requesting the next instruction. The program area responds
by sending an instruction to the control unit. The control unit then decodes the
instruction and discovers it’s an ‘‘add’’ instruction. It then sends out control
signals to (1) the data area telling it to move two values to the arithmetic device,
(2) the arithmetic device telling it to add the two values it received, and (3) the
data area telling it to receive the result of the addition.

The program area and the data area are similar in that both consist of
memory in which information is stored. However, there is a big difference in the
kind of information each area holds. The data area holds intermediate results,

Introduction 3

which are frequently changed during the execution of the program. The program
area holds the program, which usually doesn’t change while it is being executed.
(Programs that modify themselves have fallen from favor in recent years.) In
some systems the program is actually ‘‘engraved’’ into the memory so it can no
longer be changed,; it can only be read. Memories having this property are called
read-only memories (ROM for short). A ROM would obviously be unsuitable for
use in the data area. The data area consists of readable-writable memory that
came to be called RAM by accident; it should have been called RWM. (RAM
stands for random access memory, which unfortunately is not a very descriptive
title.)

A memory is a collection of sequential locations, each having a unique
address. Each location contains a sequence of bizs (short for binary digits). These
bits are the contents of the location. Each bit is either 0 or 1. More will be said
about binary digits later in this chapter.

The data area consists of registers and flags in addition to memory. Like
memory, the registers are also used to hold intermediate results. It’s usually
easier and faster to access values in registers than in memory. The computer uses
the flags as indicators to keep track of what’s going on. There are two kinds of
flags—those that record information about the results generated by previously
executed instructions (status flags) and those that control the operations of the
computer (control flags). An example of a status flag is a flag that indicates a
result is too big for the computer to handle. An example of a control flag is a flag
that tells the computer to execute instructions at a slower rate, such as one per
hour.

Another device in a computing system is a port. A port is the door through
which information passes when coming from or going to an input or output
device. For the sake of simplicity, ports were not shown in Figs. 1.1 and 1:2.

Data Formats

The contents of a memory location can represent either an instruction in the
program or a piece of data. The ways instructions are stored—as a sequence of
bits in a location—are called the instruction formats and may vary from one
computer to another. The instruction formats of the 8086 are presented in Chap.
3. The data formats used in the 8086 are described here.

Data processed by a computer can be either numeric (numbers) or non-
numeric (characters). A payroll program might make extensive use of numeric
data, whereas a text-editing program would be concerned with non-numeric data.
The format used for storing non-numeric data is known as ASCII.

Number Systems We are accustomed to representing numbers as a
sequence of decimal digits, such as 365. This is interpreted as 3 hundreds, 6 tens,
and 5 ones. It is sometimes called a base- 10 representation. It’s no accident that
we have ten fingers, and we use a base-10 representation for our numbers.
Computers don’t have fingers; they count with voltages. For reliability, they use

4 The 8086 Primer

Table 1.1 Hexadecimal Representation

Group of Four Bits Hexadecimal Digit Value
0000 0. zero
0001 1 one
0010 2 two
0011 3 three
0100 4 four
0101 5 five
0110 6 six
0111 7 seven
1000 8 eight
1001 9 nine
1010 A ten
1011 B eleven
1100 C twelve
1101 D thirteen
1110 E fourteen
1111 F fifteen

only two voltage levels. They either have a voltage or they don’t, and it’s pretty
difficult (though not impossible) to confuse the two situations. So it follows that
computers want to represent numbers as a sequence of binary digits (bits), such
as 11010. This is the base-2 representation of 1 sixteen, 1 eight, 0 fours, 1 two,
and O ones. Binary numbers can be added, subtracted, multiplied, and divided
directly (no need to convert them to decimal numbers first) as long as we
remember that 1 plus 1 is 10 (1 two and O ones) and not 2. For example:

1001 binary representation of nine
+ 0101 binary representation of five
1110 binary representation of fourteen

We tend to get confused with long sequences of binary digits, although
computers aren’t perturbed the least bit. For example, 10110101 is the binary
representation for one hundred eighty-one. To make things simpler, we have
devised a scheme of compressing long sequences of binary digits by grouping the
bits four at a time. Each group of four is represented by a single character, as
shown in Table 1.1. Thus 10110101 is abbreviated to B5. This is called a
hexadecimal number and is exactly the number system we would have used if we
had been born with 16 fingers.

Signed Numbers The binary notation is perfect for describing positive
numbers and zero. But when we want to allow for negative numbers, we need to
have an additional mechanism to indicate the sign of the number. The simplest
way to do this is to use the most significant (leftmost) bit of the number to
indicate the sign. For example:

Introduction 5

0000 0100 would be +4
1000 0100 would be —4
0111 1111 would be +127
1111 1111 would be —127

Such a representation is called sign-magnitude representation and has one serious
drawback: it requires a new set of arithmetic rules. This becomes obvious when
we try to use binary arithmetic to subtract +1 from O and expect to get —1.

0000 0000 0 in sign-magnitude
— 0000 0001 +1 in sign-magnitude
1111 1111 —127 in sign-magnitude

If we want to use the same binary arithmetic on signed numbers that we
used on unsigned numbers, we need a signed-number representation in which
1111 1111 represents —1, not —127. Furthermore, subtracting +1 from —1
should give —2. Let’s perform this subtraction to see what —2 should look like.

1111 1111 here’s —1
— 0000 0001 subtract +1
1111 1110 and call this —2

So it seems that we should represent positive and negative numbers as follows:

0000 0011 plus three
0000 0010 plus two
0000 0001 plus one
0000 0000 Zero

1111 1111 minus one
1111 1110 minus two
1111 1101 minus three

This is called a two’s complement representation, and it has the property that

binary additions and subtractions will give the correct two’s complement result.
For example:

0000 0011 +3 in two’s complement
+ 1111 1110 —2 in two’s complement
0000 0001 +1 in two’s complement

It also has the property that the most significant bit of every non-negative (posi-
tive or zero) number is 0 and of every negative number is 1. Thus, just like in

6 The 8086 Primer

sign-magnitude representation, this bit serves as a sign bit. Properties of signed
numbers are explored in more detail in Chap. 3.

The sign of a two’s complement number can be changed by changing the
value of each bit and adding +1. For example, we can obtain the two’s comple-
ment representation of —3 from the two’s complement representation of +3 as
follows:

0000 0011 +3 in two’s complement

1111 1100 +3 with each bit changed
+ 0000 0001 +1 in two’s complement

1111 1101 —3 in two’s complement

There is one precaution to note about two’s complement numbers. If an
8-bit two’s complement number is to be extended to 16 bits (so that it can be
added to a 16-bit two’s complement number, for example), some thought must
be given as to what goes into the additional eight bits.

Suppose we wanted to add 0000 0001 (+1 in two’s complement) to 0000
0000 0000 0011 (+3 in two’s complement). In this case there’s no doubt that we
would simply append eight 0’s on the left side of the +1 and then add:

0000 0000 0000 0011 (+3 in two’s complement)
+ 0000 0000 0000 0001 (+1 in two’s complement)
0000 0000 0000 0100 (+4 in two’s complement)

However, if we wanted to add 1111 1111 (—1 in two’s complement) to
0000 0000 0000 0011 (+3 in two’s complement), we must append eight 1’s to
the left side of —1 (appending 0’s would make it a positive number). The
addition is then:

0000 0000 0000 0011 (+3 in two’s complement)

+ 1111 1111 1111 1111 (—1 in two’s complement)

0000 0000 0000 0010 (+2 in two’s complement)

Thus the extension of an 8-bit number to a 16-bit number looks like this:
Value 8-bit Representation 16-bit Representation

+1 0000 0001 0000 0000 0000 0001
-1 1111 1111 1111 1111 1111 1111

The rule for extending a two’s complement number is to append additional bits
on the left side of the number with each such appended bit having the same value
as the original sign bit. This process is called sign extending.

Characters Characters can be represented as a sequence of bits. As a
minimum we need to be able to represent 26 letters and 10 digits for a total of 36
characters. But it also would be nice to be able to distinguish between upper case
and lower case letters (another 26 characters) and to be able to represent some
special characters (+ and * for example). So now we have over 64 characters and

Introduction 7

thus need at least seven bits to represent a single character (the largest value that a
6-bit number can have is only 64). A commonly used 7-bit encoding is called
ASCIlI (American Standard Code for Information Interchange) and is shown in
Appendix C. An 8-bit memory location is called a byte of memory and is
conveniently used for the storage of an ASCII-encoded character (the eighth bit is
sometimes used as a check on the validity of the other seven).

Stacks

A stack is a concept that is frequently found in microprocessors as well as
in larger machines. Other names for stacks are ‘‘pushdown lists’” or *‘last-in-
first-out queues.’’ These names are intended to convey the image of a device for
stacking cafeteria trays. When a new tray is placed on top of the stack of trays, it
pushes all trays beneath it down one level. When the top tray is removed from the
stack, all trays pop up one level. The last tray placed on the stack will be the first
tray to be removed.

To understand what all this has to do with computers, we have to look at
subroutines. Subroutines (sometimes called procedures) are parts of a program
that are called upon to perform specific tasks. This provides a means of subdivid-
ing the total problem to be solved into smaller and simpler parts. A subroutine
itself might call upon other subroutines to further subdivide the work. After a
subroutine finishes its task, it returns control back to the routine that called upon
it. The result is a sequence of subroutines, each calling upon other subroutines,
until the last subroutine called upon decides to return. In other words, the last
subroutine called will be the first subroutine to return.

When a subroutine is called upon, there is a certain amount of information
that must be saved. This might include the current contents of some of the
registers and the current settings of the flags. It certainly includes the address in
the calling routine to which the subroutine will eventually return control. When
the subroutine completes its task, it will retrieve this saved information so that it
can restore the contents of the affected registers, set the flags to their original
settings, and use the ‘‘return address’” to return control to the appropriate instruc-
tion. But since the last subroutine called is the first subroutine to return, the last
piece of information saved must be the first to be retrieved. Thus the information
must be stacked like cafeteria trays.

So far we have described how a stack behaves and why a stack would be a
useful thing in a computer. Now let’s see how a computer stack can be im-
plemented. Since the stack has to hold information, it must be some kind of
memory. Actually any portion of the available memory (other than the read-only
memory) can be used as a stack. All that is needed is a pointer to the last piece of
information that was placed in the stack portion of memory. This pointer is often
called the stack pointer, and the information it points at is usually called the fop
of the stack. When a new piece of information is placed on the stack (a process
referred to as pushing), the stack pointer is updated so that it points to the next
memory location, and the information is placed in that location. When a piece of
memory is retrieved from the stack (a process referred to as popping), the

8 The 8086 Primer

information is retrieved from the memory location that the stack pointer is point-
ing at, and the stack pointer is again updated—but this time in the opposite
direction.

8086 Memory Utilization (A Sneak Preview)

The preceding sections have illustrated that memory may be used to hold
the program (code), to store data (numeric and character), and as a stack. Thus it
is not surprising that the 8086 actually separates its memory into code segments,
data segments, and stack segments. These segments of memory are discussed in
Chap. 2.

The Microcomputer Story
Now that we’ve summarized the basic concepts of a computer, let’s take a
look at the history of computers and see how they evolved into microcomputers.

From Big Computers to Microcomputers In the 1950s all electronic
devices (radios and televisions, as well as computers) were built of bulky
vacuum-tube devices. Computers of that vintage are sometimes referred to as
first-generation computers. Examples are IBM’s 650 and 704. These computers
were housed in large rooms containing several racks of electronic equipment. By
the end of the decade, transistors and other solid-state devices began to replace
vacuum tubes. Computers using this technology are called second-generation
computers (the IBM 7090 and the Burroughs B5500, for example).

In the 1960s many discrete electronic components (resistors, capacitors,
transistors, etc.) were combined into one single complex electronic component
called an integrated-circuit (IC for short). The IC is fabricated on a wafer of
silicon smaller than a postage stamp. It is mounted on a centipede-like structure
that can be plugged into a system. This pluggable integrated-circuit became
known as a chip. Computers built out of IC chips are the third-generation com-
puters (the IBM 360, the GE 635, and the Burroughs B6700). But the
integrated-circuit technology continued to advance, and by the early 1970s many
of the components in Fig. 1.2 could be put together onto a single chip (Intel’s
4004 and 8008). This led to the coining of the term computer-on-a-chip.

By this time, not only had the size of computers been drastically reduced,
but so had the price. The vacuum-tube computers were priced in the millions of
dollars. Computers-on-a-chip were initially priced around $300, and within a few
years competition drove that price down to less than $10.

Computers-on-a-chip are called microcomputers or microprocessors. Al-
though the terms are sometimes used interchangeably, there is a difference. A
microprocessor is a single chip. It usually consists of a control unit, an arithmetic
and logical unit, registers, flags, and interfaces to both memory and input/output
devices. Program and data memory, as well as input/output devices, are usually
not on the chip. A microcomputer is an entire computer system consisting of a
microprocessor chip, memory chips, and input/output devices. Sometimes the

Introduction 9

ouTPUT
INPUT
G &5 &5 |
¥ WHIGNWAV ‘ I
§ SENSOR i
| |
| |
: ROM ;
| T !
| ! '
| |
| i |
| . |
Lo e Lo
T T
r‘—-—-‘l I
I |
] 1
| REGISTERS,
s FLAGS,
i RAM
|
|
|
L_ CENTRAL > DATAFLOW

PROCESSING
UNIT

= == = = CONTROL FLOW

Fig. 1.3 Special-purpose computer system.

entire computer system is contained on one chip (Intel’s 8048). This is called a
single-chip microcomputer.

As computers became small and inexpensive, it became economical to
build them into special-purpose systems such as cash registers, calculators, and
typewriters. An example of a computer built into a traffic light is shown in Fig.
1.3. It is not surprising that microprocessors are frequently found in such
special-purpose control applications.

From 8008 to 8086 The microprocessor era started with the introduc-
tion of Intel’s 4004 and 8008 processors in 1971. This was the first generation of
microprocessors. Both of these chips were designed for specialized
applications—the 4004 in a calculator and the 8008 in a computer terminal.
These microprocessors were somewhat of a novelty and not taken seriously. But
by 1974 when the 8008 matured into the 8080 (the second-generation mi-
croprocessor), the computer industry began to take notice. The 8080 was the first
microprocessor deliberately designed to be useful in a great variety of applica-
tions. It quickly became the ‘‘standard’’ microprocessor.

10 The 8086 Primer

The microprocessor was now able to perform the computational tasks of
the older and bulkier equipment and was inexpensive enough to find its way into
the hands of the hobbyist. Many companies other than Intel began building 8080
chips, and some companies (notably Zilog) built enhanced versions of the 8080.
Intel, itself, introduced an enhanced version in 1976 called the 8085. But the
basic 8080 character wasn’t significantly changed until 1978 when Intel pro-
duced the 8086. The 8086 is compatible enough with the 8080 so that software
written for the 8080 can be preserved. But it is sufficiently advanced to be
considered the third generation of microprocessors.

Secret of 8086’s Success What did the 8086 offer that made it an
instant success? To appreciate the answers, we must look at the limitations and
restrictions of the 8080.

The early success of the 8080 encouraged its use in larger and larger
systems. Eventually these systems became so large that they could no longer
tolerate the upper limit of 65,000 locations of 8-bit memory addressed by the
8080. The 8086 addresses over one million locations of memory. The 8080 was
also being used more and more in areas requiring rapid processing of data longer
than eight bits. The 8080°s 8-bit data size meant that longer data had to be broken
down into small pieces, and each piece had to be operated on separately, thereby
increasing the processing time. The 8086 operates on data that is 16 bits long,
while at the same time retaining the ability to process 8-bit data items so that
shorter pieces of data can still be processed efficiently. As the 8080 was starting
to be used as a general-purpose computer, the lack of multiply and divide instruc-
tions and the lack of operations on signed numbers were making it cumbersome
to use. The 8086 provides these previously missing arithmetic facilities. More
and more 8080 programs were being written in a high-level language and then
translated into a language understood by the 8080. The means by which the 8080
could address its data did little to provide for the creation of efficient 8080 code
from programs written in a high-level language. The addressing modes of the
8086 were designed to accommodate high-level-language processing. A fair
number of applications found the 8080 pitifully trying to juggle strings of data, a
task for which it was ill-prepared. The 8086 was designed to process data strings
efficiently. And, finally, as systems became more and more complex, no single
processor could be expected to perform all the functions of the system. But the
8080 never learned how to cooperate with other processors. The 8086, on the
other hand, was designed to be used in a muitiprocessor environment.

2

8086
Machine Organization

Overview

One way to describe a computer is to describe the functional components
that make up that computer. A description of these components and the interac-
tion between them is sometimes referred to as the architecture of the computer. It
is concerned with such things as how many registers are in the computer, what
functions the registers serve, how much memory can be connected, how the
memory is addressed, and what sort of input/output facilities are available.

The 8086 is a single integrated-circuit chip containing most of the compo-
nents that make up a computer. The circuitry that controls all the functions of the
computer is contained on that chip. Also contained on the chip are all of the
registers and flags. The memory and input/output ports are not contained on the
chip but can be easily connected to the chip to form a computer. The collection of
all those things on the chip is sometimes referred to as the processor.

If we had to summarize the architecture of the 8086 in one paragraph, it
would be as follows: ‘“The 8086 has four sets of registers. One set contains
general registers that are used to hold intermediate results. The second set con-
tains pointer and index registers that are used to locate information within a
specified portion of memory. The third set contains segment registers that are
used to specify these portions of memory. And the fourth set contains the instruc-
tion pointer. There are also nine flags in the 8086. These flags are used to record
the state of the processor and to control its operation. The 8086 can access up to
1,000,000 bytes of memory and up to 65,000 input or output ports.’’” The first
half of this chapter will elaborate on these features.

Typical computer instructions involve locating designated operands (data
to be processed), performing an operation on the values of these operands, and
storing the result back into a designated result location. The locations of the
operands and of the result can be either in memory or in a register as designated
by the instruction. The facilities available for designating these locations are
referred to as the operand-addressing modes of the computer. The operand-

11

12 The 8086 Primer

hexadecimal
;ddress binary address memory
00000 0000 0000 0000 0000 0000
00001 0000 0000 0000 0000 0001
00002 0000 0000 0000 0000 0010
00003 0000 0000 0000 0000 0011
J_
[——1 —~
FFFFE 1111 1111 1111 1111 1110
FFFFF 1111 1111 1111 1111 11
Fig. 2.1 Memory addresses.
byte address
(hexadecimal) memory
00000 i word starting at
00001 Hiti even address
00002
Q0003
00004
00005 it ward starting.at
00006 it 0dd address
00007
00008
00009 i wo
0000A XXXXXXX overlapping
words
00008 it

Fig. 2.2 Examples of words in memory.

addressing modes of the 8086 will be described in the second half of this chapter.

The actual instructions that operate on the designated operands are described in ‘
Chap. 3.

Memory Structure

The memory in an 8086 system is a sequence of up to 22° (approximately
1,000,000) 8-bit quantities called byres. Each byte is assigned a unique address
(unsigned number) ranging from 0 to 22°—1 (0000 0000 0000 0000 0000 to 1111
1111 1111 1111 1111 in binary, 00000 to FFFFF in hexadecimal). This is
illustrated in Fig. 2.1

Any two consecutive bytes in memory are defined as a word. Each byte in
a word has a byte address, and the smaller of these two addresses is used as the
address of the word. Examples of words are shown in Fig. 2.2

8086 Machine Organization 13

w
[} 0 C least significant byte contents of word
r is F70C
d F 7 most significant byte (hexadecimal)
increasing
addresses
w 3 B least significant byte contents of word
o is 2F3B
r 2 F most significant byte (hexadecimal)
d

Fig. 2.3 Example of “backwords” storage in memory.

A word contains 16 bits. The byte with the higher memory address contains
the eight most significant bits of the word, and the byte with the lower memory
address contains the eight least significant bits. On first reading, this seems very
natural. Of course the most significant byte should have the higher memory
address. But then when you consider that memory is a sequence of bytes starting
at the lowest address and going toward the highest address, it becomes apparent
that the 8086 stores its words backwards (perhaps they should be called
backwords). This is illustrated in Fig. 2.3.

The 8086 has some instructions that access (read or write) bytes and other
instructions that access words. The amount of information transferred to or from
memory at one time is always 16 bits. In the case of byte instructions, only eight
of those bits are used and the other eight are ignored. The 16 bits are always the
contents of two consecutive bytes in memory starting with a byte at an even
address. That means that a word instruction that reads or writes a word starting at
an even address can perform its function with one memory access. However,
word instructions for words starting at odd addresses must do more work; they
must do two memory accesses to two consecutive even-address words, ignore the
unwanted half of each, and do some byte juggling with the remaining halves.
Examples of the various byte and word reads are shown in Fig. 2.4. The program
in the 8086 is oblivious to all of these memory-accessing contortions; an instruc-
tion merely requests the accessing (reading or writing) of a particular byte or
word, and the processor does whatever is necessary to perform such an access.

Memory Segmentation

Since the 8086 can address up to 2%° bytes of memory, it would seem that,
within the 8086 processor, byte and word addresses must be represented as 20-bit
quantities. But the 8086 was designed to perform 16-bit arithmetic, and thus the
address objects it manipulates can only be 16 bits in length. An additional
mechanism is therefore required to build addresses.

We can conceive of the one megabyte memory as an arbitrary number of
segments, each containing at most 2!'¢ (approximately 65,000) bytes. Each seg-

14

The 8086 Primer

memory
: . lower addresses
processor
BYTE BEING Rey D
- S ~
~ 7 BYTE lGNORgp ~ i | even address
— ~
odd address
@ . higher addresses
memory
' {fower addresses
processor
BYTE IGNORgp)
-~ /‘{T?BEWG\RE\ ~ even address
-7 8 AD S
i odd address
®) . . higher addresses
memory
. _ lower addresses
processor
@D BEING Rg,
wo 0 i even address
ity odd address
() . higher addresses
memory
. lower addresses
processor
BYTE IGNORED
— T ~
_ %‘ gYTE OF WORD BE/NG; - even address
A\
\ 30 | ym | odd address
O il even address
S&q L2
~ “On WG T
‘ ~ i BLTE‘OF _\J_VO’R_DiE - odd address
(d) BYTE \GNORED

higher addresses

Fig. 2.4 Reading bytes and words at even and odd addresses. (a) Reading in
even-addressed byte. (b) Reading in odd-addressed byte. (c) Reading in
even-addressed word. (d) Reading in odd-addressed word requires two mem-
ory accesses.

8086 Machine Organization 15

11101111 ;
//code // 216
segment/ bytes
code 11111177
i [oo 4
register
data »4///17717 _}
segment 16 bits 0000 /7 extra / 2""16
register /segment bytes
11111117 i
stack
e I
register
extra 1il11117 }'
segment 16 bits 0000 —— // stack / 2**16
register / segment bytes
XXKXRXXN
\\ dataz\ 2"16
\ segment bytes
AW i

Fig. 2.5 Example of segments. Note that the stack segment and the data
segment overlap in this example.

ment begins at a byte address that is evenly divisible by 16 (i.e., the four least
significant bits of the byte address are ‘0”). At any given moment, the program
can immediately access the contents of four such segments. These four segments
are called the current code segment, the current data segment, the current stack
segment, and the current extra segment. (The extra segment is a general-pupose
area often treated as an additional data segment.) We identify each current
segment by placing the 16 most significant bits of the address of its first byte into
one of four dedicated registers. These registers are called segment registers.
Segments need not be unique and they may overlap. Examples of segments are
shown in Fig. 2.5.

As an example, assume that the 16-bit code segment register contains the
hexadecimal value CO18. This makes the code segment start at byte address
CO0180 and extend for a total of 2'¢ (10000 hexadecimal) bytes. The last byte in
the code segment is therefore at byte address DO17F.

We refer to bytes or words within a segment by using a 16-bit gffset
address within the 21¢ byte segment. The processor constructs the 20-bit byte or
word address by adding the 16-bit offset address to the contents of a 16-bit
segment register with four low-order zeros appended, as shown in Fig. 2.6.

So, in the previous example, the byte at byte-address CFFFF lies within the
current code segment. Specifically, it has an offset address of FE7F (CFFFF-
C0180) within the segment. This is illustrated in Fig. 2.7.

Input/Output Structure
The things connecting an 8086 system to the rest of the world are called
ports. It is through these ports that the 8086 can receive information about

16 The 8086 Primer

[16-bit segment register]0 000
I 16-bit offset address J
I 20-bit byte or word address —l

Fig. 2.6 Constructing byte or word addresses.

memory
code segment
register
cs:] C [+] 1 8 Co0180 i)
FE7F
code
CFFFF) /i segment
DO17F i
P,

Fig. 2.7 Example of constructing byte address (see text).

external events (for example, passenger’s seat belt not buckled) and can send out
signals that control other events (for example, prevent car from starting and
heckle driver).

The 8086 can access up to 2!¢ (approximately 65,000) 8-bit ports analo-
gous to memory bytes. Each 8-bit port is assigned a unique address ranging from
0 to 21—1. Any two consecutive 8-bit ports can be treated as a 16-bit port
analogous to memory words; and, like memory words, 16-bit ports at odd ad-
dresses will require two accesses instead of one each time they are used. In fact,
ports are addressed in the same manner that memory bytes or words are ad-
dressed except there are no port segment registers. In other words, all ports are
considered to be in one segment.

The 8086 has instructions for reading information from input ports and for
writing information to output ports.

Register Structure

The 8086 processor contains a total of thirteen 16-bit registers and nine
1-bit flags. For descriptive purposes, the registers are subdivided into four sets.
Three of the sets each contain four registers. A thirteenth register, namely the

8086 Machine Organization 17

7 genera(l) regls!ers 0
AX: AH AL “accumulator”
BX: BH BL “base”
CX: CH cL “count”
Dx: DH DL “data”

pointer and index registers

15]
SP: “stack pointer”
BP: “base pointer”
SI: “source index"’
DL: “destination

index”

segment registers

15 0
Cs: “code"”
DS: “data”
SS: “stack”
ES: “extra”

instruction pointer and flags

FLAGSj [ofo]i]7]s]z| [a] [p] |c pomr

Fig. 2.8 The 8086 registers and flags.

instruction pointer, is not directly accessible to the programmer and is therefore
in a set by itself. The 8086 registers and flags are shown in Fig. 2.8.

The three sets of accessible registers are the general registers, the pointer
and index registers, and the segment registers. The general registers are used
primarily for holding operands for arithmetic and logical operations. The pointer
and index registers are used for holding offset addresses within segments. The
segment registers are used for specifying starting addresses of segments.

General Registers In a processor without general registers, each in-
struction would fetch its operands from memory and return its result to memory.
But memory accesses take time. This time could be reduced by temporarily
keeping frequently used operands and results in a quickly accessible place. The
set of general registers in the 8086 processor is such a place.

The general registers of the 8086 are the 16-bit registers AX, BX, CX, and
DX. The upper and lower halves of each general register can be used separately
as two 8-bit registers or together as one 16-bit register. Thus each half of a
general register is given its own name. The least significant low halves are named
AL, BL, CL, and DL, and the most significant kigh halves are named AH, BH,
CH, and DH. The dual nature of these registers permits them to handle both byte
and word quantities with equal ease.

18 The 8086 Primer

For the most part, the contents of the general registers can participate
interchangeably in the arithmetic and logical operations of the 8086. For exam-
ple, the ADD instruction can add the contents of any 8- or 16-bit general register
to any other general register of the same size and store the result into either of the
registers. However, there are a few instructions that dedicate certain general
registers to specific uses. For example, the string instructions require the CX
register to contain the count of the number of elements in the string. Neither the
AX, BX, nor DX register may be used for this purpose. This specialized use of
the CX register suggests the descriptive name COUNT for the CX register.
Specialized uses for the AX, BX, and DX registers (to be described later) suggest
the descriptive names ACCUMULATOR, BASE, and DATA.

These specialized uses of the general registers have the disadvantage of
making the processor harder to learn because there are more special rules to
memorize. And it appears that programs will be longer because of the need to
move data from one general register to another prior to executing certain instruc-
tions. However, let’s consider how we would write a program for a processor
that treated all the general registers as equals all the time. In order to keep track
of where things are, we would probably organize the program so that particular
kinds of data always reside in particular registers. We might choose to always use
the CX register to keep track of the number of elements in a string. We would
never have to move the string size into CX; it would always be there. But since
the string instruction in our hypothetical processor can obtain the string size from
any general register, each string instruction would have to specify where its
string size is to be found. This could be done either by making each string
instruction longer (two bytes instead of one) or by having more 1-byte string
instructions. The first solution has a direct impact on making programs longer.
The second also makes programs longer because there are only a small number of
I-byte instructions (256 of them) and having more I-byte string instructions
means that some other 1-byte instructions must be increased to two bytes. So, by
having dedicated registers for certain instructions, the 8086 architecture has
actually resulted in a decrease in program size.

Pointer and Index Registers An instruction that accesses a location in
memory could specify the address of that location directly. This address takes up
space in the instruction, thereby increasing the size of the code. If addresses of
frequently used locations were stored in special registers, instructions that access
these locations would no longer need to contain the address but could instead
specify the register that contained the address. Such registers are sometimes
called pointer or index registers.

This use of registers is not unlike abbreviated telephone dialing. You can
call anyone in your town by dialing his (or her) 7-digit phone number. Or, if your
telephone company provides this service, you can enter some frequently called
phone numbers into a set of *‘registers.”” Then you can call these selected people
by dialing only the one or two digits that specify the register.

8086 Machine Organization 19

The pointer and index registers of the 8086 consist of the 16-bit registers
SP, BP, SI, and DI. These registers generally contain offset addresses for ad-
dressing within a segment. For example, an ADD instruction could specify that
one of its operands is located in the current data segment of memory at an offset
contained in a particular pointer or index register (say SI).

Pointer and index registers serve another (and perhaps more important)
function besides reducing the size of instructions; they permit instructions to
access locations whose offset addresses are the result of previous computations
performed while the program is running. It is often necessary to perform such
computations in order to establish the offset address of variables, especially in
high-level language programs. These computations could be performed in a
general register and the result moved to a pointer or index register to be used as
an offset. Elimination of such moves would result in shorter programs. For this
reason, the values contained in pointer and index registers are permitted to
participate in arithmetic and logical operations along with the 16-bit general
registers. Thus the ADD instruction mentioned above could specify that its other
operand is the contents of the DI register.

There are some differences among the registers that result in dividing this
set of registers into the pointer registers SP and BP, and the index registers SI and
DI. The pointer registers are intended to provide convenient access to data in the
current stack segment as opposed to the data segment. This use of the stack
segment as a ‘‘data area’’ has certain advantages (which will be discussed at the
end of this chapter) for the implementation of high-level languages. Thus, unless
a segment is specifically designated, offsets contained in the pointer registers are
assumed to refer to the current stack segment, whereas offsets contained in the
index registers are generally assumed to refer to the current data segment. (If the
word *‘generally’’ is used, you can bet there’ll be an exception mentioned soon.)
For example, if an ADD instruction specifies that SI contains the offset of one of
its operands, that operand will be assumed to be in the current data segment
unless the ADD instruction explicitly designates some other segment.

There are some instructions that distinguish between the two pointer regis-
ters SP and BP. The PUSH and POP instructions obtain the offset for the
top-of-stack location from the SP register, thereby suggesting the descriptive
name STACK POINTER for this register. The BP register may not be used for
this purpose. This leaves the BP register free to contain the offset of the *‘base’’
of a data area in the stack segment, thereby suggesting the descriptive name
BASE POINTER.

Furthermore, the string instructions make a distinction between the two
index registers SI and DI. Those string instructions requiring a source operand
obtain the offset for the source operand from SI; similarly, DI contains the offset
of the destination operand. This suggests the descriptive names SOURCE
INDEX and DESTINATION INDEX. For those string instructions, the roles of
SI and DI may not be interchanged. As an example, the string-move instruction
will move the string located in the current data segment starting at the offset

20 The 8086 Primer

contained in SI and relocate it to the current extra segment (there’s the exception
you were promised) at the offset contained in DI; the SI and DI registers are not
explicitly mentioned by the string-move instruction. (Incidentally, the destina-
tion string is in the extra segment instead of in the data segment so that each
string would have a segment of its own and could be up to 2! bytes long.)

Segment Registers You will recall that the 8086 has a one megabyte
memory, but addresses contained in instructions and in pointer and index regis-
ters are only 16 bits long. These addresses cannot be addresses in the one
megabyte memory but must be address offsets into some particular 65,000 byte
segment. But which one?

The segment registers of the 8086 are the 16-bit registers CS, DS, SS, and
ES. These registers are used to identify the four segments that are currently
addressable. Each register identifies a particular current segment, and they can-
not be used interchangeably: CS identifies the current code segment, DS the
current data segment, SS the current stack segment, and ES the current extra
segment.

OK. An instruction specifies an offset into a segment, and the segment
registers specify the four segments we could use. Which one do we select? The
answer depends on how the offset is to be used. An offset might be specifying the
next instruction to be executed, or it might be specifying an operand for an
instruction.

All instruction fetches are taken from the current code segment. So we
need a register that contains the offset in the current code segment of the next
instruction to be executed. This is the purpose of IP, the INSTRUCTION
POINTER. For example, if CS contains hexadecimal 1FF7 and IP contains
hexadecimal 003A, then the next instruction fetched would come from memory
location 1FFAA because:

1FF70 code segment start address
+ 003A offset contained in IP
1FFAA memory address of next instruction

(You will recall from Fig. 2.6 that the hexadecimal digit <‘0’’ is appended to the
value in the segment register when constructing memory addresses.)

The segment for operand fetches can generally be designated by preceding
the instruction with a special 1-byte prefix. This prefix specifies from which of
the four current segments the operand is to be fetched. In the absence of such a
prefix (the usual case), the operand is taken from the current data segment unless
(1) the offset address was calculated from the contents of a pointer register, in
which case the current stack segment is used; or (2) the operand is the destination
operand of a string instruction, in which case the current extra segment is used.
(The reasons for these two exceptions were mentioned in the previous section.)

As an example, consider an ADD instruction that has one of its operands in
the data segment and at the offset contained in SI. The instruction would specify
SI in its operand field but would make no mention of DS. When executing the

8086 Machine Organization 21

instruction, the processor would know to use the contents of DS along with the
contents of SI in order to locate the operand. Next, consider an ADD instruction
for which the operand is in the code segment (as might be the case with constants
in ROM) and at the offset contained in SI. This ADD instruction would, as
before, specify SI in its operand field; but, in addition, the instruction would be
preceded by a prefix byte specifying CS.

Flags The 8086 contains nine flags that are used to record processor
status information (status flags) or to control processor operations (control flags).
The status flags are generally set after the execution of arithmetic or logical
instructions to reflect certain properties of the results of such operations. These
flags are the carry flag (CF), indicating if the instruction generated a carry out of
the most significant bit; the auxiliary carry flag (AF), indicating if the instruction
generated a carry out of the four least significant bits; the overflow flag (OF),
indicating if the instruction execution generated a signed result that is out of
range; the zero flag (ZF), indicating if the instruction generated a zero result; the
sign flag (SF), indicating if the instruction generated a negative result; and the
parity flag (PF), indicating if the instruction generated a result having an even
number of ‘‘1’’ bits.

The control flags are the direction flag (DF), which controls the direction
of the string manipulation instructions; the interrupt-enable flag (IF), which
enables or disables external interrupts; and the trap flag (TF), which puts the
processor into a single-step mode for program debugging.

More details will be given on each of these flags throughout Chap. 3, and
the final section of that chapter summarizes the behavior of the flags.

Instruction Operands and Operand-Addressing Modes

Instructions in the 8086 usually perform operations on one or two
operands. For example, the ADD instruction adds the value contained in one
operand to the value contained in a second operand and stores the result back into
one of these operands. The INCrement instruction adds 1 to the value contained
in the operand and stores this result back into the operand. The time has come to
show how an instruction specifies its operands (more formally referred to as its
operand-addressing modes).

Single Operand Let’s examine an instruction that specifies a single
operand, such as the INCrement instruction. The most common uses of the
INCrement instruction are to increment the contents of a pointer or index register
(when computing offset addresses) or of a 16-bit general register (when perform-
ing arithmetic computations). For such operands, the instruction takes a very
simple 1-byte form as shown in Fig. 2.9. It contains a 3-bit reg field that

reote | o7

Fig. 2.9 Single-operand instruction where operand is in a 16-bit register.

22 The 8086 Primer

specifies one of the eight 16-bit registers (general, pointer, or index). The regis-
ter encodings used in the reg field are shown in the first two columns of Table
2.1. The remaining five bits of the instruction identify the operation and are
collectively referred to as the opcode. In the case of INCrement, the opcode is
01000. As an example, the instruction that increments the contents of the BP
register is shown in Fig. 2.10. This operand-addressing mode is sometimes
referred to as the register-mode. Table 2.2 summarizes all the operand-
addressing modes.

opcode reg

INC BP

Fig. 2.10 Instruction that increments contents of BP.

In its most general form, the INCrement instruction can increment any
general, pointer, or index register (eight or 16 bits) or any byte or word of
memory. This form is two bytes long as shown in Fig. 2.11. The opcode field is
now split; seven bits of opcode are contained in the first byte and three in the
second. The opcode for INCrement in this form is 1111111,000. The w field is a
1-bit field specifying the width of the operand. If w = 0, the operand is eight bits;
otherwise it is 16 bits. The mod field specifies whether the operand is in a
register or in memory. If mod = 11, the operand is in a register; otherwise it is in

Table 2.1 Register Encoding

16-bit Register 8-bit Register

000 AX AL
001 CX CL
010 DX DL
011 BX BL
100 SP AH
101 BP CH
110 Si DH
i DI BH

Table 2.2 Operand Addressing Modes

IMMEDIATE
REGISTER
DIRECT MEMORY ADDRESSING
INDIRECT MEMORY ADDRESSING
base register
index register
base register + index register
base register + displacement
index register + displacement
base register + index register + displacement

8086 Machine Organization 23

oo T ol m]

Fig. 2.11 Single-operand instruction where operand is in a register or memory.

memory. If the operand is in a register, the r/m field specifies which register; if
the operand is in memory, the r/m field tells where in memory it is (r/m stands
for register or memory).

First consider the case where the operand is in a register (mod = 11). The
register encodings used in the r/m field are shown in Table 2.1. This is another
instance of the register operand-addressing mode. As an example, the instruction
that increments the contents of the CL register is shown in Fig. 2.12.

opcode w mod opcode r/m
[11111 1]0] [t 1]o 0 oJo o 1]
INC byte reg- INC CL

ister

Fig. 2.12 Instruction that increments contents of CL.

Now consider the case where the operand is in memory (mod = 00, 01, or
10). This operand-addressing mode is sometimes referred to as indirect memory
addressing because the operand is in memory but the offset is not specified
directly. Instead, it is obtained by adding together a seemingly strange assort-
ment of values. (The usefulness of such a mode will be justified in the next
section.) The offset is the sum of up to three numbers: a 16-bit value (called a
displacement) specified in the instruction, the contents of an index register (SI,
DI, or none) specified in the instruction, and the contents of a base register (BX,
BP, or none) specified in the instruction. The r/m field specifies the base and
index register as shown in Table 2.3. The mod field specifies the displacement as
shown in Table 2.4. The offset thus formed locates the operand within its seg-
ment. The operand is in the current data segment (unless the contents of pointer
register BP were used in computing the offset address, in which case the operand

Table 2.3 Base and Index Register Specified by
r/m for Operands in Memory (mod + 11)

rim Field Base Register Index Register
000 BX SI
001 BX DI
010 BP Si
011 BP DI
100 none Sl
101 none DI
110 BP none
111 BX none

If mod = 00 and rim = 110, see note below Table 2.4.

24 The 8086 Primer

Table 2.4 Displacement as Specified by mod for
Operands in Memory (mod +#11)

Mod Displacement Comment

00 zero (16 bits worth)

01 8-bit contents of next byte Instruction contains
of instruction sign extended an additional byte
to 16 bits

10 16-bit contents of next two Instruction contains
bytes of instruction (next byte two additional bytes

contains least significant
eight bits and byte after that
contains most significant eight bits).

If mod = 00 and rim = 110, then:

1. Tables 2.3 and 2.4 do not apply

2. Instruction contains two additional bytes

3. Offset address is contained in those bytes (least significant eight bits precede most
significant eight bits)

opcode w mod opcode r/m displacement
 EEEEIERERIE [o1]o 0 0]1 00 o101 1100}

Fig. 2.13 An example of memory operand (see text).

is in the current stack scgment). Still another addition, involving the contents of a
segment register, is necessary to form the 20-bit memory address of the operand.

As an example, -onsider the instruction shown in Fig. 2.13. The opcode
field is 1111111 000, which is the INCrement instruction. The w field is a 1,
which indicates the operand is 16 bits. The mod field is 01, which indicates the
operand is in memory; and, furthermore, the displacement is the contents of the
next byte of the instruction sign extended to 16 bits. Thus the displacement is
0000 0000 0101 1100. The r/m field is 100, which indicates that the contents of
the index register SI are to be added to the displacement to form the offset
address. Assume SI coatains 1010 0000 1000 0110. Then the offset address is as
follows:

1010 0000 1000 0110 contents of SI
+ 0000 0000 0101 1100 displacement
1010 0000 1110 0010 offset address

Since BP was not used in computing the offset address, the offset refers to the
current data segment. Assume DS contains 1111 0000 1111 0000. Then the
memory address of the operand is as follows:

1111 0000 1111 0000 data segment
+ 1010 0000 1110 0010 offset address
1111 1010 1111 1110 0010 memory address

8086 Machine Organization 25

The operand is 16 bits wide (specified by the w field) so the operand is the
contents of the bytes located at address 1111 1010 1111 1110 0010 and at address
11111010 1111 1110 0011 with the higher-addressed byte being the most signif-
icant.

The operand need not be restricted to the current data segment or stack
segment. It can be fetched from any one of the four current segments by preced-
ing the instruction with a 1-byte prefix denoting a segment register. This 1-byte
prefix is shown in Fig. 2.14. As an example, Fig. 2.15 shows the same instruc-
tion as Fig. 2.13 except that now the operand is in the current extra segment.

unique pattern
identiz&ng prefix
yte

= 00 = current extra segment
01 = current code segment
10 = current stack segment
11 = current data segment

Fig. 2.14 Segment-overriding prefix.

seg opcode w mod opcode r/m displacement

Igo1]oo|11o| L1111111]1] [g1|ooo|1oo| [o1o111oo|
ES

Fig. 2.15 Example of using segment-overriding prefix (see text).

So far we have shown how to specify the offset of an operand in memory
by going through a base and/or index register. But often we know exactly where
the operand is, and we want to specify the offset directly in the instruction. This
mode of operand addressing is called direct memory addressing. In this mode,
the offset is contained in two bytes of the instruction (‘‘backwords,”’ of course).
The remainder of the instruction must specify the opcode and the fact that the
mode is direct memory addressing. It would be convenient to use a combination
of the bits in the mod and r/m fields to indicate this mode. Unfortunately, all the
combinations have already been accounted for by the indirect memory-
addressing mode and the register mode. But one of these combinations corre-
sponded to an infrequently used indirect memory-addressing mode and so was
chosen to correspond to direct memory addressing instead. This combination is
mod = 00 and $2r/m = 110. For example, the instruction which increments the
byte at offset 0101 1010 1111 0000 in the current data segment is shown in Fig.
2.16.

The infrequently used mode that was lost to the direct memory-addressing
mode is indirect through BP (no index register and no displacement). So now an
instruction that forms its offset from just the BP register and a zero displacement
will need to have mod = 01 and use one byte in the instruction to specify the zero
displacement.

26 The 8086 Primer

opcode w mod opcode r/m next two bytes of instruction
I111111112| [ooloool11o| |1111ooool lo1o11010]
INC byte : INC least significant most significant
bit of offset bit of offset
address address

offset is in next
two bytes

Fig. 2.16 Instruction that increments byte at offset 0101 1010 1111 0000 in
current data segment.

Two Operands Now that we’ve mastered the one-operand instruction,
let’s consider an instruction that has two operands such as ADD. As mentioned
previously, ADD takes the value of one operand, adds it to the value of the other
operand, and stores the result back in the location of either operand. If both
operands could be in memory, the instruction would need a mod field and an r/m
field for each. To keep the instruction short, it was decided that at least one of the
operands must be in a register. Now the instruction needs a mod and r/m field for
one of the operands but only a reg field for the other. This is shown in Fig. 2.17.

r opcode EM [modl reg | r/rﬂ

Fig. 2.17 Typical two-operand instruction.

The two-operand instruction uses the w field to indicate if the operands are
eight bits (w = 0) or 16 bits (w = 1). Also present is a new field not encountered
before, namely the d field (d stands for destination). The d field specifies
whether the result should be stored back into the operand specified by the mod
field and r/m field (d = O) or into the operand specified by the reg field (d = 1).
The operand into which the result is to be stored is called the destination
operand, and the remaining operand is called the source operand.

As an example, consider the ADD instruction shown in Fig. 2.18. The
opcode for ADD is 000000. The w field is O, specifying that both operands are
eight bits. The operand specified by the reg field is CH. The mod field is 11,
specifying that the mod r/m operand is in a register, and the r/m field identifies
the register as being BL. The d field specifies that the result is to be placed back
into the operand specified by the reg field, namely CH. Thus the instruction will
add the contents of register BL, the source operand, to the contents of register
CH, the destination operand, and store the result back into CH.

opcode dw mod reg r'm
lpooooofifo] Ji1fto]or]
ADD Ibyte CH
to
reg BL
operand

Fig. 2.18 Example of two-operand instruction (see text).

8086 Machine Organization 27

Lopcode]wl reg] I data I l data if w=1 I

Fig. 2.19 Simplest immediate-operand instruction.

opcode w reg data
|1o11[1]111| Joooo 11 14] [11110000'
MOV w DI

[+]

g

Fig. 2.20 Example of immediate-operand instruction (see text).

[opcode lw] lmod[opcodel r/m I [data j I dataifw = 1 l

Fig. 2.21 Immediate-operand instruction using mod and r/m fields.

opcode w mod opcode r/m data
[1100011l1| |30J000]111] |oooo1177| |1111oooo|
MOV word memory. MOV DI

Fig. 2.22 Example of immediate-operand instruction using mod and r/m fields
(see text).

One of the operands of a two-operand instruction can be a constant con-
tained in the instruction itself (referred to as an immediate operand). Since
instructions are frequently located in read-only memories (ROM:s), this would be
an ideal place to keep constant operands. But forget about trying to store a result
back into such an operand. The memory won'’t allow it.

An instruction that can specify an immediate operand is the MOVe instruc-
tion. The most common use of such an instruction is to move a constant into a
register (general, pointer, or index). In such cases, the non-immediate operand
can be specified by a reg field, and the instruction takes the simple form shown
in Fig. 2.19. The w field indicates if the operands (immediate as well as non-
immediate) are eight bits (w = 0) or 16 bits (w = 1); if eight bits, the immediate
operand occupies one byte in the instruction; otherwise it occupies two bytes and
is stored ‘‘backwords.’” As an example, Fig. 2.20 shows an instruction that
moves the value 1111 0000 0000 1111 to the 16-bit DI register.

A slightly more complicated immediate-operand instruction uses the mod
and r/m fields instead of the reg field to specify the non-immediate operand.
This is more general (non-immediate operand can be in memory) but requires an
additional byte as illustrated in Fig. 2.21. Figure 2.22 shows an instruction that
moves the value 1111 0000 0000 1111 into a word in memory in the data
segment at the offset contained in DI.

Since two-operand instructions have only one w field, either both operands
must be eight bits or both must be 16 bits. However, immediate operands are
frequently small numbers that don’t require 16 bits. This is particularly true of
immediate operands used with addition, subtraction, and comparison instruc-

28 The 8086 Primer

I opcode lslwl lm"dJﬂ’fE[r/m I [data I [data is s,w=0,1J

Fig. 2.23 Immediate-operand instruction containing s field.

opcode s w mod opcode r/m data
|1ooooo|1]1| Jo olo 0 of1 1 9] Joooor 1]
ADD I word memory ADD DI

no
sign
extend

Fig. 2.24 Example of immediate-operand instruction containing an s field.

tions; it is less true of immediate operands used with logical instructions. It
follows that we could reduce the size of immediate-operand instructions if we
didn’t have to use 16 bits to house small numbers. To accomplish this, some of
the immediate-operand instructions (additions, subtractions, and comparisons)
contain an s field (s means sign-extend). This field only has significance for
16-bit operands (w = 1) and signifies whether all 16 bits of the immediate
operand are contained in the instruction (s = 0) or whether only the eight least
significant bits are contained in the instruction and must be sign-extended to form
the 16-bit operand (s = 1). This form is illustrated in Fig. 2.23

Figure 2.24 shows an example of such an instruction. In this example, the
value C000 0000 0000 1111 is added to the contents of a word in memory and the
result placed back into the memory word. The memory word is in the data
segment at the offset contained in DI. Note that one byte is eliminated by having
the s field.

Comments about Operand-Addressing Modes
After having read and understood the operand-addressing modes just de-
scribed, you might be asking the following questions:

1. Do I really have to fill in the mod, r/m, reg, w, s, d, etc., fields every
time I want to use an instruction that has operands?
2. Why are there so many memory-addressing modes?

The answer to the first question is NO, unless you are of the conviction that the
only proper way to write a program is in terms of 1’s and 0’s. But if you believe
in automatic programming aids such as assemblers or compilers, you’ll never
have to look at a mod, r/m, reg, etc., field again; any decent assembler and
every compiler will make these details invisible to you.

To understand the answer to the second question, you will recall that the
8086 was designed so that a program written in a high-level language could be
translated into efficient code. Typical high-level language features were exam-
ined to determine what kinds of operand-addressing modes would best support
them. Some of these features will now be discussed.

8086 Machine Organization 29

Most programming languages have the concept of simple variables and
arrays. A simple variable is a variable that represents a single value; an array is a
variable that represents a sequence of values. Consider an assignment statement
typical of the kind found in many high-level languages.

AQ) = X

This statement is read ‘‘Ith element of A becomes X.’ It could be translated into
code that moves the contents of the memory location corresponding to the simple
variable X into a register, say BL, and then moves the contents of BL into the
memory location corresponding to the Ith element in the array A. Assume that X
is the contents of the memory location at offset OFF0 (hexadecimal) in the current
data segment. Furthermore, assume A(0), the first element of the array A, is at
offset OFF1 in that segment. The machine instruction that moves (the contents of)
X into BL is shown in Fig. 2.25 (a). This utilizes the special case of mod and r/m
chosen for direct memory addressing. Since accessing of simple variables such as
X is a frequent occurrence, it is not surprising that a special addressing mode was
provided. The machine instruction that moves the contents of BL into A(l) is
shown in Fig. 2.25 (b). Here it is assumed that the value of the index I already
exists in an index register. Such array accesses point out the need for the indirect
memory-addressing mode ‘‘index register + displacement.’’ Assignments of the
form A(I) = B(J) point out the need for at Jeast two index registers, each with the
addressing mode just mentioned, specifically ‘‘SI + displacement’’ and “‘DI +
displacement.’’ Accesses to array elements such as A(I+2) present no additional
complication; the displacement field of Fig. 2.25 (b) would merely contain OFF3,
the offset of A(2), instead of the offset of A(0). "

opcode dw mod reg offset
Looo1o[[o] [00]011[11—| [t 1110000 Joooor11]
MOV | BL least significant most significant
bits of offset bits of offset
to
reg exception case
operand offset is in
next two bytes
(a)
opcode dw mod reg r/m displacement
ltooo1olo]€| |1o]o'1|10—| L111ooo—l |00001111|
MOV | byte least significant most significant
. bits of displacement bits of displacement
(]
r/m offset is
operand contents of DI

pius displacement
(b)

Fig. 2.25 Machine instruction for A(l)=X. (a) Moving X to BL. (b) Moving BL to
A(l).

30 The 8086 Primer

Certain high-level languages have the concept of a based variable. A based
variable corresponds to the memory location whose address is contained in some
other variable called a pointer. If the value of the pointer (i.e., the value con-
tained in the memory location corresponding to the pointer) changes, the based
variable will correspond to a different memory location. A convenient way to
access a based variable is to place the value of the pointer in BX and then use the
operand-addressing modes involving BX. Specifically, the mode ‘‘BX’’ would
be used to access a simple based variable and “‘BX + SI"’ or *‘BX + DI’” would
be used to access an element in a based array.

Some high-level languages employ the concept of a record. A record (also
called a structure in some languages, notably PL/M) is a collection of named data
items possibly of differing types. This is in contrast to an array, which is a
sequence of (unnamed) data items all of the same type. A payroll program, for
example, might have a record corresponding to each employee. Each record
might contain the employee’s name, social security number, year-of-hire, and
salary. A particular record item such as year-of-hire is in the same position in
every employee record. For example, if year-of-hire is contained in the fourth
byte from the start of each employee record and the employee record for John
Doe starts at offset 03B4 (hexadecimal), then John Doe’s year of hire is con-
tained in the memory location at offset 03B7. Thus the location of any given item
in a record is at a fixed location and can be accessed with direct addressing; it is
in essence no different from a simple variable.

Consider now a based record and assume that the value of the pointer on
which the record is based is contained in the BX register. The operand-
addressing mode to access an item from such a record would be ‘“BX + dis-
placement’’ where displacement would be the position in the record correspond-
ing to the item. For example, displacement would be 3 if the item were year-of-
hire in a based employee record. Unless the record is quite large (more than 256
bytes), the displacement can be contained in eight bits and a single-byte dis-
placement (moed = 01) can be used.

Although the operand-addressing mode for accessing items in based rec-
ords appears similar to the mode for accessing array elements (both are ‘‘register
+ displacement’’), there is a big difference. In the case of array elements, the
displacement corresponds to the start of the array, and the register corresponds to
the distance into the array. In the case of based records, the register corresponds
to the start of the record, and the displacement corresponds to the distance into
the record.

Arrays and records can be combined. Consider an array where each ele-
ment of the array is an employee record. And, furthermore, consider that this is a
based array. Assume that the pointer is in BX and an index corresponding to an
array element is in SI. The operand-addressing mode needed to access the year-
of-hire item of the particular record being indexed is ‘‘BX +SI +displacement’’
where displacement would be a 3. This justifies the need for the 8086’s most
complicated operand-addressing mode, namely ‘‘base register + index register

8086 Machine Organization 31

+ displacement.’’ So it appears as though the operand-addressing modes aren’t
overkill after all.

What still remain to be justified are the operand-addressing modes involv-
ing BP as the base register and the corresponding use of the stack segment instead
of the data segment. These modes have been provided to allow for an efficient
implementation of block-structured languages and reentrant subroutines. A reen-
trant subroutine is a subroutine that may be invoked (called upon) while it is
already in execution from a previous invocation. This could occur if (1) the
subroutine invoked itself, (2) the subroutine invoked some other subroutine that
in turn invoked the original subroutine, or (3) the execution of the subroutine was
suspended because an interrupt occurred, and during the processing of the inter-
rupt, the subroutine was invoked again.

All the data (local variables and parameters) utilized by a reentrant sub-
routine must have a unique memory location for each concurrent invocation of
the subroutine, otherwise the data being used by one invocation of the subroutine
might be corrupted by a subsequent invocation. This means that memory must be
allocated for the subroutine’s data every time the subroutine is invoked. Such
memory is called an activation record. Although it’s not essential, it would be
highly desirable for the subroutine to release this memory when the subroutine
finishes. Since the last subroutine invoked is the first to finish, the stack serves as
a convenient place from which to allocate such memory. Each time a subroutine
is invoked, a block of memory on the top of the stack is reserved for the
activation record by simply changing the contents of register SP, the stack
pointer. During the execution of the subroutine, it is necessary to maintain a
pointer to the beginning of the activation record; this is the reason for having BP,
the base pointer. Accesses to items within the activation record can be performed
with the operand-addressing modes involving BP. Specifically, a simple variable
within the activation record can be accessed by the mode ‘‘BP + displacement, *’
and an array element within the activation record can be accessed with *‘BP + SI
+ displacement.’’ Since BP was involved in the address calculation, the access
will be to the current stack segment (as opposed to the current data segment),
which is exactly where the activation record is.

The uses of the memory-addressing modes in high-level languages are
summarized in Table 2.5.

Table 2.5 Use of Direct and Indirect Memory-Addressing
Modes in High-Level Languages

Not Based Based Activation Record
SIMPLE VAR direct BX BP+placement
ARRAYS Sl-+displacement BX+SI BP +Sl+displacement

Di+displacement BX+DI BP+Dl+displacement
RECORDS direct BX+displacement BP +displacement

ARRAYS OF REC Sl+d|:splacement BX+Sl+displacement BP+SI+displacement
Di+displacement BX+Dl+displacement BP-+Sl+displacement

3

8086
Instruction Set

The previous chapter described the source and destination operands of an
instruction; this chapter describes the operation an instruction performs on these
operands. The instructions are described in an informal manner. A more formal
description can be found in the Intel MCS-86 User’s Manual.

Several of the instructions have a general (long) form as well as a restricted
(short) form. The short form uses fewer bytes but is more limited in the operands
it allows. The purpose of the short form is to allow the most frequent cases to be
programmed in the fewest number of bytes. For example, the general form of the
PUSH instruction pushes an operand that is either in a register or in memory. It
requires two bytes to specify the operand. The short form of PUSH operates only
on registers and is only one byte long. Unless you’re planning to write your
programs directly in 1’s and 0’s, you won’t have to be concerned about instruc-
tions having multiple forms; a good assembler will let you specify the instruc-
tions, and it will select the most efficient forms. Appendix A summarizes the
possible forms of each instruction and Appendix B summarizes the opcodes.

For convenience, the instructions are grouped into the following catego-
ries: data-transfer instructions, arithmetic instructions, logical instructions, string
instructions, transfer-of-control instructions, interrupt instructions, flag instruc-
tions, and synchronization instructions. Each of these categories will now be
described in detail.

Data Transfer Instructions

The 8086 has four classes of data transfer instructions: general-purpose
transfers, accumulator-specific transfers, address-object transfers, and flag trans-
fers. These are summarized in Table 3.1.

General-Purpose Transfers The general-purpose transfers are MOV
(move), PUSH, POP, and XCHG (exchange). A segment register may be used as
one of the operands of these instructions so that new values may be placed into

32

8086 Instruction Set 33

segment registers and the old values saved. Once a value is placed in segment
register, it makes little sense to perform any calculations using that value. There-
fore, none of the other instructions permit segment registers as operands. (The
segment register is specified with a 2-bit seg field where 00 denotes ES, 01
denotes CS, 10 denotes SS, and 11 denotes DS; if the instruction has a d field,
then d = 1 denotes that the segment register is the destination operand.)

Table 3.1 Data Transfer Instructions

General Purpose

MOV (move): SOURCE = > DEST
PUSH (push): SOURCE = > stack
POP (pop): stack = > DEST
XCHG (exchange): SOURCE < = > DEST
Accumulator Specific

IN (input): port = > AL or AX
OUT (output): AL or AX = > port
XLAT (transiate): f(AL) = > AL

Address Object Transfers
LEA (load effective address into register): offset of SOURCE = > REGISTER

LDS (load pointer into register and DS): SOURCE, SOURCE +1 = > REGISTER
SOURCE +2, SOURCE+3 => DS

LES (load pointer into SOURCE, SOURCE +1 = > DEST, DEST+1
register and ES): SOURCE +2, SOURCE+3 = > ES

Flag Transfers

LAHF (load AH with flags): SF,ZF AF,PF,CF = > AH
SAHF (store AH into flags): AH = > SF,ZF ,AF,PF,CF
PUSHF(push flags): flags = > stack
POPF (pop flags): stack = > flags

The MOV instruction performs a byte or word transfer from the source
operand to the destination operand. One of the operands is specified with a mod
field and an r/m field. The other operand can be specified either by a reg field, a
seg field (segment register operand), or a data field (immediate operand). In
order to optimize frequently occurring cases, several short forms of the MOV
instruction also are provided, as shown in Fig. 3.1.

34 The 8086 Primer

l1 0001 Old[wl Imodl reg | r/m l

MOV—move register/memory to/from register

MOO 01 1[w| lmodlo 0 o| Tm l [data | L data if w=1 l

MOV—move immediate to register/memory

[rorw ea] | data | [daaitw-1]

MOV—move immediate to register

11 01000 olwl [oﬂset-low_] l offset-high I

MOV—move memory to accumulator

[1 01000 1|w] l offset-low] I offset-high l

MOV—move accumulator to memory

[1 0001 11d|0| Imodlolsegl r/mJ

MOV—move register/memory to/from seg-
ment register

Fig. 3.1 Formats of MOV instruction.

The PUSH instruction transfers a word from the source operand to the
stack. The POP instruction does just the opposite; it transfers a word from the
stack to the destination operand. The stack is a portion of memory contained in
the current stack segment. The SP register contains the offset of the last word
entered onto the stack. This word is called the top of the stack. As successive
words are pushed onto the stack, they are placed in consecutively lower memory
addresses (the stack grows toward lower memory and shrinks toward higher
memory). The PUSH instruction starts by decrementing the contents of SP by 2,
thereby locating the next free stack word. The POP instruction finishes by incre-
menting the contents of SP by 2, thereby removing the word just accessed from
the stack. Figure 3.2 illustrates the effect of a PUSH instruction and a POP
instruction.

The operand of a PUSH or POP instruction is specified either by a mod
field and an r/m field, a reg field, or a seg field, as shown in Fig. 3.3.

A word of caution is in order at this time. Consider what would happen if
an instruction changed the contents of the CS register. The effect of such an
instruction would be to cause a new segment to become the current code seg-
ment. But the usual incrementing of the IP register will cause IP to contain the
offset of the next sequential instruction in the previous code segment. Thus the
combination of CS and IP will specify a meaningless memory address, and the
processor will attempt to fetch the next instruction for execution from this mean-
ingless address. So, unless the instruction that alters the contents of CS also puts
a related value in IP, the processor will wind up making a wild transfer. For this
reason, certain instructions that permit a segment register to be used as an
operand may not use one particular segment register—namely CS. This occurs in
(1) a MOV instruction when the seg field denotes CS as the destination operand

8086 Instruction Set

stack segment
r—> 00A80
available for
future entries
o C l on the stack
00ABA
L ——»-00ABC top of
stack
entry
(a)
previous entries

on the stack
stack segment
N
SS: o 0 A 8 ———»-00A80
available for
future entries
SP: o 0 0 A' on the stack
L——»00A8A] 1 F top of
stack
A0 entry
00ABC
(b}

previous entries
. J on the stack

stack segment

ss:f 0 0 A 8 ——— 00A80
available for
future entries
SPiI 0o 0 0 Cl on the stack
00ABA 1 F
A O
L——»-00A8C top of
stack
entry
(c)
previous entries

on the stack

Fig. 3.2 Example of pushing and popping entries on stack. (a) Initial stack
configuration. (b) Stack configuration after executing a PUSH instruction that
pushes the value of AO1F onto the stack. (c) Stack configuration after executing
a POP instruction.

36 The 8086 Primer

[11111111[[mod]t 1 0] vm |
PUSH—push registerimemory

PUSH—push register

EniN

USH—push segment register

(=]

°

|1ooo1111| |modfo 0 o im |

POP—pop register/memory

01011 reg

POP—pop register

o 0 ofseq]t t 1

POP—pop segment register
Fig. 3.3 Formats of PUSH and POP instructions.

and (2) the POP instruction. The actions of the processor when encountering such
instructions are undefined. The undefined instructions are shown in Fig. 3.4.

The final general-purpose data-transfer instruction is the XCHG instruc-
tion. This instruction performs a byte or a word interchange between the two
operands. There is no need to distinguish the operands as source and destination,
and hence the instruction contains no d field (thereby making room for another
opcode). The XCHG instruction has a general form and a short form as shown in
Fig. 3.5.

Accumulator-Specific Transfers The accumulator-specific transfers
include IN (input), OUT (output), and XLAT (translate). Unlike the previous

opcode d opc mod opc seg r/m

[tooo 1]s[o] |- -Jofo]- - -]
717

MOV

to
seg
operand
(a)
opcode seg opcode

oo o []

Ccs

POP
(b)
Fig. 3.4 Undefined instructions. (a) Moving a new value into CS. (b) Popping a
new value into CS.

8086 Instruction Set 37

[rooooiifw] fmod] reg T rm |

XCHG—exchange register/memory with register

[001 0] req |

XCHG—exchange with accumulator

Fig. 3.5 Formats of XCHG instruction.

transfers, which treated all registers other than the segment registers as equals,
these transfers discriminate by permitting only the accumulator to serve as the
operand. The reason they were made accumulator-specific was to avoid the need
for any mod, r/m, or reg fields.

The IN instruction transfers data (byte or word) from an input port to the
accumulator (AL or AX). Similarly, the OUT instruction transfers data from the
accumulator to an output port. The port number can be specified either directly
by a byte in the instruction or indirectly by the contents of the DX register. Note
that this is a specialized use of the DX register: none of the other general-purpose
registers can be used for this function. Only the first 256 ports can be specified
directly in the instruction, whereas any of the 21¢ (approximately 65,000) ports
can be specified indirectly. The direct specification, although requiring the in-
struction to contain an additional byte, has the advantage of not requiring the
execution of an additional instruction to preload the port number into a register.
The indirect access has the advantage that program loops can be used to access
consecutive ports. The formats of the IN and OUT instruction are shown in Fig.
3.6. The difference between the direct and the indirect port specification is
shown in Fig. 3.7.

The XLAT instruction (shown in Fig. 3.8) transfers a byte from a table into
the accumulator AL. The beginning of the table is specified by register BX
(another specialized use of a general-purpose register). The index into the table is
the original contents of AL.

l1—11oo10|w] [port I

IN—input to AL/AX from fixed port

IN—input to AL/AX from variable port

Fv1oo1ﬂ§] [port J

OUT—output from AL/AX to fixed port

OUT—output from AL/AX to variable port
Fig. 3.6 Formats of IN/OUT instructions.

38 The 8086 Primer

opcode w port number
@ [1 1100100 Jooi111100
IN byte
opcode w reg data
[1o11ojo1o] Joot1 1100
MOV b DX
y
1
e
opcode w
o [T
IN byte

Fig. 3.7 Contrasting direct and indirect port specification for inputting the byte
from port 3C (hexadecimal). (a) Direct specification: port number in instruction.
(b) Indirect specification: port number first loaded into DX register.

11010111

XLAT—translate byte to AL
Fig. 3.8 Format of XLAT instruction.

The XLAT instruction is useful for translating an encoded value into the
same value under a different encoding. For example, consider the following
encoding of the decimal digits O through 9:

Digit Encoding
0 11000
1 00011
2 00101
3 00110
4 01001
5 01010
6 01100
7 10001
8 10010
9 10100

This encoding is of practical interest because each encoded value contains
exactly two ‘‘1”’ bits (sometimes referred to as a 2-out-of-5 code) and is actually
used in telephone signaling applications. Suppose we want to translate the binary
digit 7 into a 2-out-of-5 code. The steps to perform this translation are as follows:

1. Place the offset of a table containing the encodings into BX.

2. Place binary 7 (0000 0111) into AL.

3. XLAT—this will fetch the seventh entry from the table (0001 0001) and
place it in AL.

This translation is illustrated in Fig. 3.9.

8086 Instruction Set 39

Address-Object Transfers The address-object transfers are LEA (load
effective address), LDS (load pointer into DS), and LES (load pointer into ES).
These instructions provide the programmer with some control over the address-
ing mechanism. The formats for these instructions are shown in Fig. 3.10. Note
that although these instructions use a mod and an r/m field to specify one
operand and a reg field to specify the other operand, there is no d field to specify
which operand is the source and which is the destination. The d field is unneces-

offset into current
BX: l =
data segment

translation table: | 00011000
00000011
00000101
00000110
00001001
00001010

00001100

00010001

00010010
00010100

(a)

(®)
AL: | 00010001
(©

Fig. 3.9 Example of using XLAT instruction to translate the digit 7 from binary
encoding to a 2-out-of-5 encoding. (a) Translation table for converting binary to
2-out-of-5 code. (b) Contents of register AL before executing XLAT instruction.
(c) Contents of register AL after executing XLAT instruction.

|1 000110 1] Imodl regT r/ml

LEA—Iload EA to register

|1 100010 1] [modl reg r/ﬂ_l

LDS—load pointer to DS

h100010_o] fmod] req [vm |

LES—Iload pointer to ES

Fig. 3.10 Formats of address-object transfer instructions.

40 The 8086 Primer

sary because the source operand of these instructions always comes from or
refers to memory and hence has to be specified by the mod and r/m fields. The
reason the source operand must come from or refer to memory will become
apparent as each of the address-object transfers is described.

The LEA instruction provides access to the offset address of the source
operand as opposed to the value of the operand. Hence this instruction would be
meaningless if the source operand did not refer to memory. The effect of the
instruction is to transfer the 16-bit offset address of the source operand to the
16-bit register designated as the destination operand. This facility is useful for
passing the offset address of a variable from one part of the program to another so
that the other part of the program can modify the value of the variable if it so
desired. Objects that are passed between different parts of the program are called
parameters, and the different parts of the program are called subroutines. For
example, suppose one subroutine had the responsibility for incrementing vari-
ables. Other parts of the program could call on this incrementing subroutine and
have it increment a specific variable. The offset address of the variable to be
incremented could be passed as a parameter to the incrementing subroutine by
placing the offset address in a mutually agreed upon register, such as BX, prior to
calling the incrementing subroutine. The LEA instruction is tailor-made to do
just that. The reg field of the LEA instruction would designate the BX register
(011), and the mod and r/m fields would designate the offset address of the
variable. The instruction would be executed prior to calling the subroutine. The
subroutine could then access the variable by using the appropriate operand-
address mode involving BX (mod=00, r/m=111). Note that if the value of the
variable instead of its offset were passed to the incrementing subroutine, the
subroutine would know the value but would be unable to alter it.

The LDS instruction transfers four consecutive bytes (32 bits) from a
source operand to a pair of 16-bit destination registers. The source operand must
be in memory. One destination register is the 16-bit destination operand specified
by the reg field in the instruction; the other destination register is DS. The LES
instruction is similar to LDS except that the other destination register is ES
instead of DS. The actual data transferred is illustrated in Fig. 3.11. The LDS
and LES instructions provide an efficient means for setting up the segment start
address and offset address of a variable so that the variable can be accessed by
succeeding instructions. This combination of segment start address and offset
address is called a pointer, the LDS (or LES) instruction transfers a pointer from
memory into registers appropriate for the operand-addressing modes. For exam-
ple, assume offset addresses OF1C to OF1F (four bytes) in the current data
segment contain a pointer to a 1-byte variable as shown in Fig. 3.12 (a). The
two-instruction sequence for loading the value of the variable in the AL register
is shown in Fig. 3.12 (b).

Flag Transfers The flag transfer instructions (Fig. 3.13) provide access
to the set of processor flags. The instructions are LAHF (load AH with flags),
SAHF (store AH into flags), PUSHF (push flags), and POPF (pop flags).

8086 Instruction Set

| 16-bit register

Offset address specified by reg
as specified by field of instruction
mod and r/m fields
of instruction 3 c 1 F

L =

~|lwjol
N —

@|P>|®

} DS or ES

8 7 A 5

Fig. 3.11 Data movement for LDS and LES instruction.

current data

segment
80000
OF1C
80FIC} C 8
segment containing
1 0 variable being
pointed at
B8 0
14B00
1 4
10C8
I—-158(:8 3 F | one-byte
variable
(a)
least significant most significant
bits of offset bits of offset

opcode reg rm address address

mod
i)11ooo101] Eol111|110| Eoo111oo| [00001111|
BX

LDS 1C OF

offset is in
next two bytes

opcode dw mod reg r/m

ii) l1 000 1 o]1|0| |o_o|o 0 o|1 1'—1|

MOV Tbyte L AL BX
to no displacement

reg
operand

(b)

Fig. 3.12 Examplie of using LDS instruction. (a) Memory containing a pointer to
a variable. (b) Instructions that (i) load pointer into registers DS and BX; (i) use
operand-addressing mode involving DS and BX to access variable being
pointed at.

M

The 8086 Primer

t0011 111
LAHF—Iload AH with flags

10011110

SAHF—store AH into flags

10011100

PUSHF—push flags

10011101

POPF—pop flags

Fig. 3.13 Formats of flag-transfer instructions.

SF
zF
AF
PF
CF

AH:

:

Fig. 3.14 Correspondence between flags and bits of AH.

TT1 top o

increasing IF
memory
addresses e DF
OF

Fig. 3.15 Correspondence between flags and bits on the stack.

8086 Instruction Set 43

The LAHF instruction transfers the flag registers SF (sign flag), ZF (zero
flag), AF (auxiliary carry flag), PF (parity flag), and CF (carry flag) into specific
bits of the AH register. The SAHF instruction transfers specific bits of the AH
register into these flags. These five flags were singled out for no other reason
than that they were the five flags present in the 8080 processor. (The LAHF and
SAHF instructions exist mainly to permit programs written for the 8080 to be
translated into efficient 8086 programs.) The correspondence between bits in AH
and the five flags is shown in Fig. 3.14.

The PUSHF instruction enters a word on the stack and transfers all nine of
the flags into specific bits of this word. The POPF instruction removes a word
from the stack and transfers specific bits of this word into the nine flag registers.
The correspondence between bits of the stack word and the nine flags is shown in
Fig. 3.15.

Arithmetic Instructions

The 8086 provides the four basic mathematical operations in a number of
different varieties. The arithmetic instructions of the 8086 are shown in Table
3.2. Both 8- and 16-bit operations and both signed and unsigned arithmetic are
provided. Furthermore, correction operations are provided to allow arithmetic to
be performed directly on decimal rather than on binary digits.

Table 3.2 Arithmetic Instructions

Addition
ADD (add): DEST+SOURCE = > DEST
ADC (add with carry): DEST+SOURCE+CF = > DEST
INC (increment): DEST+1 = > DEST
Subtraction
SUB (subtract): DEST-SOURCE = > DEST
SBB (subtract with borrow): DEST-SOURCE—-CF = > DEST
DEC (decrement): DEST-1 => DEST
NEG (Negate 0—DEST = > DEST
CMP (compare): DEST-SOURCE => ?
Muitiplication
MUL (multiply): AL*SOURCEs = > AX
or AX*SOURCE1s = > DX,AX
IMUL (integer muitiply): Same as above but signed multiply
Division
DIV (divide): AX/SOURCEs = > AL ;remainder = > AH

or DX,AX/SOURCE ¢ = > AX ;remainder = > DX

IDIV (integer divide): Same as above but signed divide

44 The 8086 Primer

unsigned signed
number representation number representation
0 0000 0000 -128 1000 0000
1 0000 0001 -127 1000 0001
2 0000 0010 —-126 1000 0010
126 0111 1110 -1 1111 1111
8-bit 127 ot11 1111 0 0000 0000
128 1000 0000 +1 0000 0001
253 1111 1101 +125 0111 1101
254 1111 1110 +126 0111 1110
255 AR RN RRR +127 o111 1111
(a) unsigned 8-bit numbers (b) signed 8-bit numbers
number representation number representation
0 0000 0000 0000 0000 —~32,768 1000 0000 0000 0000
1 0000 0000 0000 0001 —32,767 1000 0000 0000 0001
2 0000 0000 0000 0010 -32,766 1000 0000 00CO 0010
52,766 0111 1111 1111 1110 —1 1111 1111 1111 1111
16-bit 32,767 0111 1111 1111 1111 0 0000 0000 0000 0000
32,768 1000 0000 0000 0000 +1 0000 0000 0000 0001
65533 1111 1111 1111 1101 32,765 0111 1111 1111 1101
65,534 1111 1111 1111 1110 32,766 0111 1111 1111 1110
65,535 1111 1111 1111 1111 32,767 0111 1111 1111 1111
(c) unsigned 16-bit numbers (d) signed 16-bit numbers

Fig. 3.16 Range of 8- and 16-bit signed and unsigned numbers.

The difference between signed and unsigned numbers is in your interpreta-
tion of the bit patterns. Unsigned numbers are interpreted in binary notation.
Signed numbers are interpreted in the two’s complement notation described in
Chap. 1. Figure 3.16 shows the range and representation of signed and unsigned
numbers. Addition and subtraction operations are the same on both types of
numbers. Thus the ordinary binary addition and subtraction instructions designed
for unsigned numbers will also give the correct results when applied to signed
numbers. The only difference between signed and unsigned addition and subtrac-
tion is the mechanism for detecting out-of-range results. The add and subtract
instructions set the CF flag if the result, when interpreted as an unsigned number,
is out of range; and set the OF flag if the result, when interpreted as a signed
number, is out of range. It is possible for either the signed or unsigned result to
be out of range with the other result being in range. Figure 3.17 illustrates this.

The six status flags are set or cleared by most arithmetic operations to
reflect certain properties of the result of the operations. We have just discussed

8086 Instruction Set 45

two of these flags, CF and OF. In general, the six flags are set to recognize the
following conditions:

1.

CF is set if the operation resulted in an unsigned result being out of
range.

OF is set if the operation resulted in a signed result being out of range
(called signed overflow).

. ZF is set if the result of the operation is zero (signed or unsigned).

SF is set if the most significant bit of the result of the operationis a ‘1°,
thereby indicating a negative result.

. PF is set if the result of the operation contains an even number of ‘1’

bits (called even parity).
AF is set if a correction is needed for decimal operations (discussed in
detail later).

A summary of the behavior of these flags appears at the end of this chapter.
Multiple-precision arithmetic is a means of dealing with unsigned numbers
larger than 16 bits by breaking the numbers into 8- or 16-bit fields and perform-
ing repeated operations on successive fields starting with the least significant. If
any of these operations yields an out-of-range result, the result is still valid, but a
‘1’ is carried into (addition) or borrowed from (subtraction) the operation on the
next field. As an example, consider adding the 24-bit number 0011 1010 0000

interpretation as interpretation as
representation unsigned numbers signed numbers
(a) both signed 0000 0100 4 +4
and unsigned + 0000 1011 1" +11
results in — — —
range 0000 1111 15 CF=0 +15 OF=0
(b) unsigned 0000 0111 7 +7
result out + 1111 1011 251 -5
of range —_— —_— —
0000 0010 2 CF=1 +2 OF=0
***out of range™**
{c) signed 0000 1001 9 +9
resuit out + 0111 1100 124 +124
of range -_ —_
1000 0101 133 CF=0 -123 OF=1
***out of range™**
(d) both signed 1000 0111 135 -121
and unsigned - 1111 0101 245 -11
result out —_— . —_—
of range 0111 1100 124 CF=1 +124 OF =1
***out of range™™* ***out of range™*”

Fig. 3.17 Examples of out-of-range results in unsigned and signed additions.

46 The 8086 Primer

0111 1011 0010 to the 24-bit number 0100 0000 1100 0010 0101 0011. This can
be done in three successive additions on 8-bit numbers, as shown below:

1. The least significant eight bits are added together:

1011 0010
0101 0011
0000 0101 with CF = 1

2. The middle eight bits are added together along with any carry generated
by the previous addition:

1 (last CF)
0000 0111
1100 0010
1100 1010 with CF = 0

3. The most significant eight bits are added together along with any carry
generated by the previous addition:

0 (last CF)
0011 1010
0010 0000
0101 1010

Thus the result is 0101 1010 1100 1010 0000 0101. This example points out the

need to have an instruction (add-with-carry) that adds the values of the two

operands and the value in CF all together. A similar instruction, subtract-with-
. borrow, is useful for multiple-precision subtraction.

An unsigned addition or subtraction result going out of range can be planned
for when performing tasks such as multiple-precision arithmetic. It is a normal
event and does not indicate an error condition. A signed result going out of
range, on the other hand, is usually unanticipated. It indicates that a fault has
occurred and that the results must be corrected before computations can proceed.

Addition Instructions The addition instructions are ADD (add), ADC
(add-with-carry), and INC (increment). These instructions may, in general, be
applied to any operands.

The ADD instruction (Fig. 3.18) performs a byte or word addition of the
contents of the source and destination operands and stores the result back in the
destination operand. One of the operands can be in a register or in memory (mod
and r/m field); the other operand can be in a register (reg field) or in the
instruction (immediate field). Both a general form and short form of the
immediate-operand ADD instruction are provided.

The ADC instruction is similar to the ADD instruction except it includes
the initial value of CF in the addition. This facilitates the multiprecision arithme-
tic discussed above. The forms of the ADC instruction are the same as the forms
for the ADD instruction and are summarized in Fig. 3.19.

8086 Instruction Set 47

IFO 000 Oldlwl lmi)dl reg I r/m I
ADD—add register/memory with register to either

|1 0000 olsM [modlo oof om | l data J rdataifsw=01 |

ADD—add immediate with register/memory to register/memory

looooo oW | data | Idataifw:lJ

ADD—add immediate with accumulator to accumulator

Fig. 3.18 Formats of ADD instruction.

looo1oofalw] Jmod reg | nm |

ADC-—add-with-carry register/memory with register to either

[o000 ofsjwf [moafo 1 of r/m—l L data J | dataifsw=2_l

ADC—add-with-carry immediate with register/memory to register/memory

Iooo1o1_oM | data] rdalaifw=1 |

ADC—add-with-carry immediate with accumulator to accumulator
Fig. 3.19 Formats of ADC instruction.

[t1 11111 Jmodooof vm |

INC—increment register/memory

ECOERCE

INC—increment register

Fig. 3.20 Formats of INC instruction.

The INC instruction has only one operand. The instruction adds ‘1’ to the
contents of the operand and stores the result back in that operand. The INC
instruction has a general form and a short form as shown in Fig. 3.20.

The INC instruction is identical to the ADD instructions with an immediate
operand of 1 but requires fewer bytes. INC was included in the instruction set
because adding (and subtracting) 1 is a very frequent operation and should
therefore be done in as few bytes as possible.

Subtraction Instructions The subtraction instructions are SUB (sub-
tract), SBB (subtract with borrow), DEC (decrement), NEG (negate), and CMP
(compare). The first three are analogous to the three addition instructions, and
their formats are shown in Fig. 3.21.

The NEG instruction (Fig. 3.22) changes the sign of its operand. For
example, if the operand contained the representation of —1 (1111 1111), the
NEG instruction would change it to +1 (0000 0001).

The CMP instruction is similar to the subtract instruction except the result
is not stored back into the destination operand. In fact, the result is not stored
anywhere; it is just lost inside the processor. No doubt you re probably wonder-
ing, ‘‘Of what use is an instruction that loses its result?’’ It turns out that the flag

48 The 8086 Primer

oo 101 ofaw] fmod reg | wm |

SUB—subtract register/memory with register to either

frooooofslw] [modt o] vm]| | data | | cataitsw-o1 |
SUB—subtract immediate with register/memory to register/memory

[0010110W| I data J | dataitw=1 |

SUB—subtract immediate with accumulator to accumulator

EO 011 Old'wl [mod[reg | r/m I

SBB—subtract-with-borrow register/memory with register to either

[fooooofsw] Jmodo 1] wm | | data] rdataifsw=01]
SBB—subtract-with-borrow immediate with register/memory to register/memory

fooor11ow | data | | ocaaitw=1 |
SBB—subtract-with-borrow immediate with accumulator to accumulator

[rrri1 1w fmodo o] om |

DEC—decrement register/memory

DEC—decrement register
Fig. 3.21 Formats of SUB, SBB, and DEC instructions.

h111o1ﬂ§| Imod[011] r/m1

NEG—change sign (negate)
Fig. 3.22 Formats of NEG instruction.

Table 3.3 Flag Setting after a CMP
Instruction Is Executed

Relationship of Destination Operand to Source Operand CF ZF SF OF
EQUAL 0 1 0 0

Signed Operands LESS THAN — 0 1 0
LESS THAN — 0 0 1
GREATER THAN — 0 0 0
GREATER THAN — 0 1 1

Unsigned Operands BELOW 1 0 — —
ABOVE 0 0 - —

Unspecified entries in above table can be either ‘0’ or ‘1’ depending on the actual values
of the operands.

8086 Instruction Set 49

settings that reflect certain properties of the result are more important than the
result itself. From these flag settings, we can deduce the relationship between the
value of the two operands that entered into the subtraction. For example, if the
ZF flag is set to ‘1°, then the result is zero and the value of the two operands must
have been identical. The flag settings for each of the various possible relation-
ships are shown in Table 3.3. A CMP instruction is typically followed by a
conditional jump instruction (discussed later) that tests the flag settings to see if a
particular relationship was satisfied. The forms of the CMP instruction are the
same as the forms of the SUB instruction and are shown in Fig. 3.23.

Multiplication and Division Instructions Multiplication of two 8-bit
numbers has the potential for yielding a product up to 16 bits long. Consider, for
example, the multiplication of the unsigned numbers shown in Fig. 3.24.

Similarly, the multiplication of two 16-bit numbers can give a 32-bit prod-
uct. The 8086 multiplication instructions permit multiplying either an 8- or 16-bit
quantity contained in AL or AX by an operand of the same size specified in the
instruction itself. The 16- or 32-bit product is placed back into AX and, if
necessary, into DX. This is illustrated in Fig. 3.25.

The division instructions of the 8086 are designed to undo what the multi-
plication instructions did. Specifically, the division instructions divide the 16-bit
number in AX (or the 32-bit number in AX and DX) by an operand of half that
size specified in the instruction. The remainder is placed in AL (AX in the bigger
case), and the quotient is placed in AH (DX in the bigger case). This is illustrated
in Fig. 3.26.

lO o111 OFM Imcd[reg l rlm—l

CMP—compare register/memory with register

fr 0000 0sw] frodf+ T om | T data | [oaitsw=o011]

CMP—compare immediate with register/memory

fporrriow] | eata] [damitw-1]

CMP—compare immediate with accumulator
Fig. 3.23 Formats of CMP instruction.

1111 1111 (8 bits)
11 111 (8 bits)

1111 1111
1 1111 111
11t 1
111 1111 1
1111 1111
11111 11
11 1111 11
111 1111 1

1111 1110 0600 0001 (16 bits)

Fig. 3.24 Example illustrating that product can be up to twice as long as
operands.

50 The 8086 Primer
oo o

“ (16-bits) [DX | AX | @2bis)

AX
Fig. 3.25 Source and destination operands for multiplication.

remainder

] [

Ioperandl >| AH l AL | remainder

(a)

AX | AX | [DX

1

operand. I) l DX l AX J

(b)

Fig. 3.26 Source and destination operands for division. (a) 8-bit divisor. (b)
16-bit divisor.

Unlike addition and subtraction, the ordinary binary multiplication and
division instructions that work for unsigned numbers do not give the correct
results when applied to signed numbers. This is illustrated in Fig. 3.27. Thus
special multiplication and division instructions must be provided for signed num-
bers. The 8086 multiplication and division instructions are MUL (unsigned mul-
tiply), IMUL (signed multiply, sometimes called integer multiply), DIV (un-
signed divide), and IDIV (signed divide, sometimes called integer divide). The
formats of the multiply and divide instructions are shown in Fig. 3.28.

A word about signed division is in order. If we divide —26 by +7, we
could get a quotient of —4 and a remainder of +2. Or we could get a quotient of
—3 and a remainder of —5. Either pair of results would be correct. In one case
the remainder is positive, and in the other case it is negative. The 8086 signed
division instruction was designed so that the remainder will have the same sign as
the dividend. For the above division, the 8086 will produce a quotient of —3 and
a remainder of —5. Division, defined in this manner, will give quotients (and
remainders) with the same absolute value for —27 divided by +7, —27 divided
by —7, +27 divided by +7, and +27 divided by —7.

Table 3.4 summarizes the number of bits in the operands and the results of
various arithmetic instructions. The instructions were designed so that the
double-length result of a multiplication could be used in a future division. What
if you want to use the result of a multiplication for someting other than division?
For instance, how would you multiply 17 (0001 0001) by 10 (0000 1010) and add
20 (0001 0100) to the product? That’s simple. Just ignore the eight most signifi-

8086 Instruction Set 51

cant bits of the product. But now comes the problem of performing a division on
a number that was not generated by a previous multiplication. For example, try to
divide a plain old 8-bit version of 35 (0010 0011) by 7 (0000 0111). The division
instruction expects a 16-bit dividend to be in AX. Simply putting an 8-bit divi-
dend into AL won’t work because the division instruction will use whatever

representation interpretation as an interpretation as
_— unsigned number a signed number
1111 1111 255 -1
1111 1111 * 255 1
1111 1111
1 1111 111
11 1111 1
111 1111 1
1111 1111
1 1111 111
11 1111 11
111 1111 1
1111 1110 0000 0001 65,025 -511
(correct result) (incorrect result)

Fig. 3.27 Example demonstrating that ordinary binary multiplication does not
give correct result for signed numbers.

h11101'1M le100l r/m_]

MUL—multiply (unsigned)

[1 11101 1w [mod|1o1| oim |

IMUL—integer multiply (signed)

1111101M lmod|110Lr/ml

DIV—divide (unsigned)

l1111o11Fv] [mod|111J r/ml

IDIV—integer divide (signed)
Fig. 3.28 Formats of multiply and divide instructions.

Table 3.4 Size of Operands and Results

First Operand Second Operand Resuft
ADD 8 (addend) 8 (augend) 8 (sum)
16 (addend) 16 (augend) 16 (sum)
SUBTRACT 8 (minuend) 8 (subtrahend) 8 (difference)
16 (minuend) 16 (subtrahend) 16 (difference)
MULTIPLY 8 (multiplicand) 8 (multiplier) 16 (product)
16 (multiplicand) 16 (multiplier) 32 (product)
DIVIDE 16 (divisor) 8 (dividend) 8 (quotient),
8 (remainder)
32 (divisor) 16 (dividend) 16 (quotient),

16 (remainder)

52 The 8086 Primer

garbage it finds in AH as the eight most significant bits of the dividend. Well,
that’s no problem. Just make sure to zero out AH before doing an 8-bit by 8-bit
division or zero out DX before doing a 16-bit by 16-bit division.

Zeroing out the most significant half of the double-length dividend works
fine for unsigned division, but how about signed division? Converting the 8-bit
version of —2 (1111 1110) to the 16-bit version (1111 1111 1111 1110) involves
setting the eight most significant bits to all 1’s, whereas converting the 8-bit
version of +3 (0000 0011) to the 16-bit version (0000 0000 0000 0011) involves
setting the eight most significant bits to all 0’s. The rule is simple: just extend the
leftmost bit (sometimes called the sign bit) of the 8-bit version into every bit
position in the most significant half of the 16-bit version. The process of stretch-
ing numbers by extending the sign bit is called sign extension. The 8086 provides
instructions (Fig. 3.29) to facilitate the task of sign extension. These instructions
were initially named SEX (sign extend) but were later renamed to the more
conservative CBW (convert byte to word) and CWD (convert word to double
word). The CBW instruction extends the sign bit of AL into all bits of AH; the
CWD instruction extends the sign bit of AX into all bits of DX. Figure 3.30
summarizes the steps for performing 8-bit by 8-bit or 16-bit by 16-bit divisions.

Decimal Arithmetic All the arithmetic operations discussed so far have
been on binary numbers. That’s because computers think in binary. But people
don’t. Our world is decimal. If God had intended for us to think in binary, we
would have been born with only two fingers. So the first obstacle we face when
doing arithmetic operations with computers is converting input numbers from our

10011000

CBW—convert byte to word

10011001

CWD—convert word to double word

Fig. 3.29 Formats of sign-extension instructions.

SIGNED UNSIGNED
8-bit by 8-bit move divisor into AL move divisor into AL
sign extend AL into AH (CBW) put zero into AH
divide AH by dividend divide AH by dividend
16-bit by 16-bit move divisor into AX move divisor into AX
sign extend AX into DX (CWD) | put zero into DX
divide BX,AX by dividend divide DX,AX by dividend

Fig. 3.30 Performing equal length divisions.

8086 Instruction Set 53

Table 3.5 BCD Encoding of Decimal Digit

Digit: (] 1 2 3 4
Encoding: 0000 0001 0010 001 0100
Digit: 5 6 7 8 9
Encoding: 0101 0110 ot 1000 1001

language to theirs and then converting results back the other way. The fact that
the conversions waste time is unfortunate. But what’s worse is that the computer
is thinking about a different problem than we are thinking about, and this could
result in some surprising results. For example, we would be justifiably upset if
our computer-controlled car odometer wrapped around after 131,071 (instead of
99,999) miles just because 131,072 is a power of 2.

Why then must computers be so stubborn and insist on ‘‘thinking’’ in
binary? Just because they work with only two voltage levels, 0 and 1, they need
not represent their numbers in binary notation. Certainly these O’s and 1’s could
be used to encode each decimal digit in a number separately. For example,
instead of representing the decimal number 37 by its binary equivalent 0010
0101, it could be represented by a binary encoding for 3 (0011), followed by a
binary encoding for 7 (0111), resuiting in the representation 0011 0111. Note
that this is a binary encoding of the demical digits and is appropriately referred to
as binary-coded decimal or BCD. Table 3.5 lists the encoding of each demical
digit. The reason computers typically ‘‘think’’ in binary notation instead of in
BCD is that the binary notation is more compact. For example, the number 125
can be represented in eight bits in binary notation (0111 1101) but requires 12
bits in BCD (0001 0010 0101).

How about arithmetic on numbers represented in BCD notation? Can BCD
numbers be added, subtracted, multiplied, and divided? One way to do this is to
have BCD addition, BCD subtraction, BCD multiplication, and BCD division
included in the instruction set of the computer in place of (or in addition to) the
conventional binary addition, binary subtraction, binary multiplication, and bi-
nary division instructions. Another solution is to use the binary arithmetic in-
structions on the BCD numbers, knowing full well that the wrong BCD answer
will be obtained and then executing a special adjustment instruction that will
convert the answer to the correct answer in BCD notation. The latter is used by
the 8086.

Consider, for example, adding the BCD representation of 23 to the BCD
representation of 14 by using the (8-bit) binary addition instruction. The addition
is shown below:

0010 0011 =23
+ 0001 0100 = 1 4
0011 0111 =37

54 The 8086 Primer

Lo and behold, the binary addition gives the correct BCD result! So in this
example, no adjustment is necessary. Let’s push our luck further and try to add
29 in BCD to 14 in BCD. This addition is as follows:

0010 1001 =29
+ 0001 0100 = 1 4
0011 1101 =3 ?

This answer is not correct because the encoding 1101 does not represent a
decimal digit. What’s happened is that a 4-bit encoding can represent up to 16
distinct digits, but there are only 10 distinct decimal digits. Thus any addition of
two digits whose sum is greater than 9 will enter into the forbidden 6-digit range
and give the incorrect answer. The way to adjust for this is to add 6 to the sum in
any digit position that treads in the forbidden range, thereby compensating for the
six forbidden digits that must be passed over. Thus the sum of the previous
example is adjusted as follows:

0011 1101 =3 ?
+ 0110=06
0100 0011 =43

And 43 is the correct answer. In this example, the journey through the forbidden
range was easy to detect because the result was ‘‘caught in the act.”” A more
subtle case occurs when the sum passes completely through the forbidden range
and winds up on a valid digit of the other side. The addition of BCD 29 and BCD
18 illustrates this.

0010 1001 =29
+ 0001 1000 = 1 8
0100 0001 = 4 1

In this case, the result is incorrect because the rightmost digit of the sum passed
completely through the forbidden range, and thus that digit should be adjusted by
adding 6. However, there is no way to determine that such an adjustment is
necessary by inspecting the result. One property of a digit passing completely
through the forbidden range is that, during the addition, a carry is generated out
of the corresponding digit position. In the above example, a carry is generated
out of the low-order digit position into the high-order digit position. Thus results
could be adjusted if we had some way of knowing when carries are generated out
of either digit position. The carry flag (CF), already discussed, indicates when an
addition generates a carry out of the most significant bit (and hence out of the
most significant digit). The auxiliary-carry flag (AF) exists solely to indicate
when an addition generates a carry out of the least significant digit, so the BCD
adjustment can be applied. In the above example, CF is set to 0, and the AF is set
to 1 after the addition.

8086 Instruction Set 55

Multiple precision arithmetic can be performed on BCD numbers. This is
illustrated by adding the number 2889 to the number 3714. It involves two
successive additions and adjustments as shown below:

1. The least significant pairs of digits are added together:

1000 1001 = 8 9
+ 0001 0100 = 1 4
1001 1101 = 9 ? CF=0 AF =0

2. Adjustment is applied:

1001 1101 = 9 ?
+ 0110 = adjustment
1010 0011 = 73
+ 0110 = adjustment
0000 0011 = 0 3 CF =1 AF =1

3. The most significant pairs of digits are added together along with the
last value of CF:

| 1 (last CP)

0010 1000 = 2 8

+ 0011 0111 = 37

01100000 =60 CF=1 AF =0

4. Adjustment is applied:

01100000 = 60
+ 0110 = adjustment
01100110 = 6 6

5. The final result:
0110 0110 0000 0011 = 6603

The 8086 instruction that performs the decimal adjustment is DAA (deci-
mal adjust for addition). The DAA instruction assumes the sum is in AL. Based
on the value in AL and the settings of CF and AF, the DAA instruction deter-
mines the necessary adjustment and applies it to AL. A similar instruction, DAS
(decimal adjust for subtraction), will adjust the result after a subtraction opera-
tion. It is not possible to apply an adjustment for multiplication because the BCD
result is buried under and indistinguishable from the cross-terms generated.
Similarly, a divide adjustment is not possible. So, if you need to perform multi-
plication or division on decimal numbers, you’ll have to use a different decimal
represeritation as described below.

The BCD representation discussed so far is more accurately referred to as
packed BCD because two digits are packed into a byte. Another representation,
called unpacked BCD, contains only one digit per byte. The digit is contained in
the four least significarit bits; the most significant bits have no bearing on the

56 The 8086 Primer

Table 3.6 ASCIl Representations of Digits
Digit ASCIl

0011 0000
0011 0001
0011 0010
0011 0011
0011 0100
0011 0101
0011 0110
0011 0111
0011 1000
0011 1001

©CONONHWN=-O

value of the represented number. One example of unpacked BCD is the ASCII
representations of digits. ASCII is a 7-bit representation of a set of characters
(see Appendix C). The ASCII representations of digits are shown in Table 3.6.
The four most significant bits contain 0011, which is not relevant to the digit
value.

Addition and subtraction of unpacked BCD representations can be adjusted
in a manner similar to the packed BCD adjustments, except only the least signifi-
cant digit is affected. Unlike packed BCD, multiplication and division adjust-
ments are possible for unpacked BCD. The instructions that perform these four
adjustments are called ASCII adjustment instructions (because ASCII is the most
common example of unpacked BCD) and are AAA (ASCII adjust for addition),
AAS (ASCH adjust for subtraction), AAM (ASCII adjust for multiplication), and
AAD (ASCII adjust for division). The forms of the decimal and ASCII adjust
instructions are shown in Fig. 3.31.

00100111

DAA—decimal (packed) adjust for addition

00101111

DAS—decimal (packed) adjust for subtraction

00110111

AAA—ASCII (unpacked) adjust for addition

00111111

AAS—ASCII (unpacked) adjust for subtraction

|11o10100] Jooooioro
AAM—ASCII (unpacked) adjust for multiplication

|1101o1g_1| |oooo1o1o|

AAD—ASCII (unpacked) adjust for division
Fig. 3.31 Format of decimal and ASCIl adjust instructions.

8086 Instruction Set 57

As an example of unpacked BCD multiplication, consider multiplying 9 by
4. Assume unpacked 9 (0000 1001) is in the BL register and unpacked 4 (0000
0100) is in the AL register. Applying the (unsigned) binary multiplication in-
struction specifying BL as the source (multiplier) will put the 16-bit binary
product, namely 36 (0000 0000 0010 0100), in AX. The multiplication adjust-
ment (AAM) must decompose the binary 36 in AX into 3 (0000 0011) in AH and
into 6 (0000 0110) in AL. This is nothing more than dividing the contents of AL
by ten and placing the quotient in AH and the remainder in AL. In fact, it’s no
coincidence that the AAM instruction is two bytes long (it appears as though one
byte would have sufficed) with the second byte being nothing more than the
binary representation of ten (0000 1010). In reality, the AAM instruction is a
kind of division instruction (although it doesn’t put the remainder and quotient in
the same places that DIV and IDIV do) with the divisor operand contained in the
second byte of the instruction. Don’t be surprised if changing the second byte
from ten (0000 1010) to seven (0000 0111) results in a divide-by-seven instruc-
tion (although Intel makes no such promise). And it follows that putting sixteen
(0001 0000) in the second byte should result in converting a packed BCD number
in AL into an unpacked BCD number in AH and AL.

Observe that in the example just presented, the operands 0000 1001 and
0000 0100 were unpacked BCD numbers having all zeros in the most significant
four bits. If this were not the case, the multiplication would generate cross-terms
that would hide the desired result 0010 0100 (it was just such cross-terms that
made adjustments for packed BCD multiplication impossible). Thus before mul-
tiplying unpacked BCD numbers, you must zero the most significant four bits of
each operand unless you know that they are already zero. A convenient instruc-
tion for zeroing selected bits of a byte is the AND instruction (to be discussed
later).

So far we have seen how to multiply a 1-digit unpacked BCD number by
another 1-digit unpacked BCD number. Let’s now try to multiply a multidigit
number by a 1-digit number. For example, 539 times 6. When we first learned
arithmetic, we were taught to perform such multiplication as follows:

“‘Nine times six is 54. Write down the four and carry the five. Three times
six is 18, plus five to carry makes 23. Write down the three and carry the
two. Five times six is 30, plus two to carry makes 32. Write it down.”’

In summary form it looked something like this:

25 (carries)
539
X 6
3234

Now let’s see how an 8086 would tackle this problem. Assume the number
539 is stored as unpacked BCD in variables a3, a2, and al respectively. Also
assume that the number 6 is stored as unpacked BCD in variable b. Furthermore,

58 The 8086 Primer

assume that the most significant four bits of a3, a2, al, and b are all zero. We
want to multiply a3, a2, al by b and put the result in variables c4, ¢3, c2, cl.
This is represented diagrammatically as follows:

a3 a2 al
X b
c4 3 c2 «cl
The steps in an 8086 program to perform this multiplication would be something
like this:

1. al *b —>AX ;nine times six is . . .

2. AAM ; 54 (five in AH, four in AL)
3. AL —>cl ;write down the four

4. AH —>¢2 ; and carry the five

5. a2 *b —>AX sthree times six is . . .

6. AAM ; 18 (one in AH, eight in AL)
7. AL + ¢2 ~>AL ;plus five to carry makes . . .
8. AAA ; 23 (two in AH, three in AL)
9. AL —>¢2 ;write down the three
10. AH —>¢c3 ; and carry the two
11. a3 *b —>AX ;five times six is . . .
12. AAM ; 30 (three in AH, zero in AL)
13. AL + c2 —>AL ;plus two to carry makes . . .
14. AAA ;32
15. AL —>c3 ;80 write
16. AH —>c4 ; it down

Observe the use of additions and the corresponding AAA adjustments in the
above example. Let’s examine one of those AAA’s in detail. When the AAA on
line 8 adjusted AL from invalid (0000 1101) to three (0000 0011), it generated a
carry out of the least significant digit of AL. That carry did not go into the most
significant digit of AL but rather went into the least significant digit of AH,
thereby adjusting AH from one (0000 0001) to two (0000 0010). Thus the AAA
instruction involves an adjustment not just to AL but to both AH and AL. This
side effect of AAA would not have been necessary if AAA were used solely for
additions and not for multiplications.
A more elegant algorithm (involving a loop) for doing multidigit unpacked
BCD mutiplication is outlined in Fig. 3.32. Although only single-digit mutipliers
are discussed here, the extension to multidigit multipliers is straightforward.
Next consider an unpacked BCD division, such as 42 divided by 6. As-
sume unpacked 42 is in AX (0000 0100 in AH, 0000 0010 in AL) and unpacked
6 (0000 0110) is in BL. The unpacked representation of a single-digit number, |
such as 6, is nothing more than its binary representation. So let’s put the div-
idend, 42, into binary. This can be done by multiplying the contents of AH by ten |
and adding it to the contents of AL. A binary division of AL (binary 42) by BL

8086 Instruction Set

addition
addend: a(n) a(n—1) a(n-2) . . . a(3) a(2) a(1)
augend: b(n) b(n-1) b(n—2) . .. b(3) b(2) b(1)
sum: c(n+1) cn) c(n—1) c(n-2) ... c(3) c(2) c(1)

clear the carry flag CF
do the following once for each integer value of i from 1 to n
move af(i) into AL
add-with-carry b(i) to AL
add-adjust Al into AH,AL
move AL into C(i)
move AH into C(n+1)

subtraction
minuend: a(n) a(n—1) a(n—2) . .. a(3) a(2) a(1)
subtrahend: b(n) b(n—1) b(n—2) . .. b(3) b(2) b(1)

difference: c(n+1) ¢(n) c(n—1) c(n—2) . . . ¢(3) c(2) c(1)

clear the carry flag CF
do the following once for each integer value of i from 1 to n
move a(i) into AL
subtract-with-borrow b(i) from AL
subtract-adjust AL into AH,AL
move AL into C(i)
move AH into C(n+1)

multiplication

muitiplicand: a(n) a(n—1) a(n-2) . . . a(3) a(2) a(1)
multiplier: b

product: ¢c(n+1) c(n) c(n—1) ¢(n-2) ... ¢c(3) c(2) c(1)

clear most significant four bits of b
clear c(1)
do the following once for each integer value of i from 1 ton
clear most significant four bits of a(i); put result into AL
multiply AL by b
multiply-adjust AL into AH,AL
add c(i) to AL
add-acﬂust AL into AH,AL
move AL into c(i)
move AH into c(i+1)

division
dividend: a(n) a(n—1) a(n—2) . . . a(3) a(2) a(1)
divisor: b
quotient: c(n) c(n—1) ¢(n-2) ... c¢(3) ¢(2) c(1)

clear most significant four bits of b

clear AH

do the following once for each integer value of i from n to 1
clear most significant four bits of a(i); put result into AL
divide-adjust AH,AL into AL
divide AL by b with remainder going into AH
move AL into c(i)

Fig. 3.32 Multi-digit unpacked BCD arithmetic.

59

60 The 8086 Primer

(6) would then give the binary representation of 7 in AL. But binary 7 is nothing
more than unpacked 7, so the unpacked division is complete.

There are three points to note from the preceding example. First, division
adjustment (AAD) consists of multiplying AH by ten and adding in AL (again,
it’s no coincidence that the second byte of the AAD instruction is a ten). Second,
division adjustment precedes the division operations, whereas addition, subtrac-
tion, and multiplication adjustments follow the corresponding arithmetic opera-
tion. In other words, the addition, subtraction, and multiplication adjustments
correct a bad (i.e., non-BCD) result, whereas the division adjustment prevents a
bad result from occurring. Third, the unpacked BCD dividend and divisor must
have all zeros in the most significant four bits. This requirement applies to
multiplication as well but is not necessary for addition and subtraction.

A multidigit dividend can be divided by a single-digit divisor in much the
same manner as was already illustrated for mutiplication. An algorithm for doing
such multidigit unpacked BCD division is shown in Fig. 3.32. Unfortunately,
this method does not generalize to divisions with multidigit divisors. Such divi-
sions can be done by ‘‘guessing’’ at the quotient, using unpacked BCD multipli-
cation and subtraction to see how close the guess was, and then successively
refining the guess. This is exactly what we do in the ordinary pencil-and-paper
method of long division. More refined algorithms for performing long divisions
are discussed in the book entitled The Art of Computer Programming—Volume 2
by Donald E. Knuth.

Logical Instructions

The 8086 logical instructions consist of Boolean instructions and shift/
rotate instructions as summarized in Table 3.7.

Table 3.7 Logical Instructions

AND: DEST and SOURCE = > DEST

TEST: DEST and SOURCE = > ?

OR: DEST or SOURCE = > DEST

XOR: DEST xor SOURCE = > DEST

NOT: not DEST = > DEST

SHL (shift logical left): CF<—DEST<—0
SHR (shift logical right): 0——>DEST—>CF
SAL (shift arithmetic left): same as SHL

SAR (shift arithmetic right): sign—>DEST——>CF

ROL (rotate left):

ROR (rotate right):

RCL (rotate left through carry):
RCR (rotate right through carry):

8086 Instruction Set 61

[1111011[@ Imoaﬁnoumj

NOT—invert

Foroo ol [l]

AND—and register/memory with register to either

[1 0000 olsM [modﬁ 0 oh/ﬂ L data] | dataitsw =01 J

AND—and immediate with register/memory to register/memory

I001001olv_v] I data —l Ldataiiw=1J

AND—and immediate with accumulator to accumulator

fo 0001 olaw Eg[reg | r/ﬂ

OR—inclusive-or registerrmemoary with register to either

Fo 000 Olslwl Imodlo o 1| r/mj | data J [dalaifsw:mJ

OR—inclusive-or immediate with registerrmemory to register/memory

|0000110M | data | [ceaitw=1 |

OR—inclusive-or immediate with accumulator to accumulator

FO 110 Old|w| lmod‘ reg | r/m—l

XOR—exclusive-or register/memory with register to either

m 000 Olslw] MF 1 Ol m] L data J I data if sw = 01]

XOR—exclusive-or immediate with register/memory to register/memory

|oo11o1oM L data] rdataifw:1J

XOR—exclusive-or immediate with accumulator to accumulator

Jtoooo OM [mou] reg nm]
TEST—test register/memory with register

|1 11101 1M [modafo 0 of wm] | data] l data if sw = 01 I

TEST—test immediate with register/memory

1010100 [e | | dataitw=1

TEST—test immediate with accumulator

Fig. 3.33 Formats of Boolean instructions.

Boolean Instructions The Boolean instructions are NOT, AND, OR
(inclusive-or), XOR (exclusive-or), and TEST. The forms of these instructions
are shown in Fig. 3.33

The AND, OR, and XOR instructions perform a logical function between
each bit of a source operand and the corresponding bit of a destination operand
and place the result back in the bit of the destination operand. The NOT instruc-
tion has only one operand; it performs its function on each bit of that operand and
places the result back in that same bit. The logical functions performed by these
instructions are defined in Table 3.8.

62 The 8086 Primer

Table 3.8 Definition of Logical Functions

One Operand

Source Bit Not
0 1
1 0

Two Operands

Source Bit Destination Bit And Or Exclusive-Or
0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

The ‘‘and”’ function is useful for clearing (sometimes called masking)
specified bit positions in a number; one operand specifies the bit positions and the
other specifies the number. For example, we can clear the most significant four
bits in an 8-bit number by ‘‘anding’’ that number with 0000 1111. (You will
recall that it was necessary to clear the most significant four bits of an unpacked
decimal number prior to performing a decimal multiplication or division.)

In a similar manner, the ‘‘or’’ function and ‘‘exclusive-or’’ function are
useful for setting and complementing specified bit positions in a number. For
example, we can set the most significant bit in an 8-bit number by ‘‘oring’’ the
number with 1000 0000, and we can complement the middle four bits in an 8-bit
number by ‘‘exclusive-oring’’ that number with 0011 1100. The “‘not’’ function
is useful for complementing every bit in a number; it is equivalent to
“‘exclusive-oring”’ that number with all 1°’s.

The TEST instruction is similar to the AND instruction in that both perform
an ‘‘and’’ function between corresponding bits of two operands. However, the
TEST instruction retains only the flag settings and not the result. Such an instruc-
tion is useful for examining specified bit positions in a number to determine if
any of them are 1. Again, one operand specifies the bit positions and the other
specifies the number. If the (discarded) result is non-zero, as indicated by the ZF
flag (ZF = 0 means result is not zero), then at least one of the specified bits is a
1. For example, to determine if any of the least significant four bits of BL are 1,
place 0000 1111 into BH, execute a TEST instruction that designates BL. and BH
as its operands, then execute a conditional jump instruction that jumps if ZF is 0.
Note that the AND instruction could have been used in place of the TEST
instruction, but this would have destroyed the initial value of one of the operands
because the AND instruction doesn’t discard its result.

Shift/Rotate Instructions The shift instructions provide a very efficient
mechanism for doubling or halving a number (fewer bytes and fewer cycles than
doing a multiplication or division). To double an unsigned number, just shift all
bits one position to the left and fill in the vacated rightmost bit with a 0. And if

8086 Instruction Set 63

the bit that was shifted off the left end is placed into CF, an out-of-range result
can be detected by testing CF for a 1. For example, doubling the number 65
(0100 0001) by shifting left results in 130 (1000 0010) with CF becoming O
(in-range), whereas shifting left the number 130 (1000 0010) results in 4 (0000
0100) with CF becoming 1 (out-of-range). Similarly, halving an unsigned
number is accomplished by shifting all bits one position to the right, filling in the
vacated bit position with a 0, and placing into CF the bit that was shifted off the
right end. In this case, CF = 1 indicates that the number was not even. For
example, halving the number 9 (0000 1001) results in 4 (0000 0100) with CF
becoming 1.

The instructions that perform the doubling and halving of unsigned num-
bers are SHL (shift left) and SHR (shift right). Two other shifts, SAL (shift
arithmetic left) and SAR (shift arithmetic right), are useful for doubling and
halving signed numbers. The forms of these instructions, along with the rotate
instructions, are shown in Fig. 3.34.

The difference between halving a signed number, SAR, and halving an
unsigned number, SHR, is that in the former the leftmost bit (sign bit) must
remain unchanged. For example, halving +6 (0000 0110) should result in +3
(0000 0011), and halving —120 (1000 1000) should result in —60 (1100 0100).
Thus SAR will shift all bits one position to the right but at the same time leave the
sign bit unchanged.

Observe that using the SAR instruction to halve +5 (0000 0101) gives +2
(0000 0010), and using it to halve —5 (1111 1011) gives —3 (1111 1101).
Right-shifting an odd number always gives a result that is smaller than half the
number (—3 is smaller than —2%).

[ﬁ 010 olﬂﬂ Imodl1 0 ol r/mJ

SHUL/SAL—shitt logical/arithmetic left

F 010 Olvlwl lmod[1 o] ll r/mJ

SHR—shift logical right

[11ovoon Imodl11ir/Ln_J

SAR—shift arithmetic right

|1 1010 OIVM lmodlo 0 o| rm [

ROL—otate left (8-bit rotate)

F'1 010 o]vM Jmod]o 0 4] “um]

ROR—rotate right (8-bit rotate)

1101 00]vw fmodlo 1 of um |

RCL—rotate-through-carry left (9-bit rotate)

F1 01 qulwl [550]0 1 1| r/mJ

RCR—rotate-through-carry right (9-bit rotate)

Fig. 3.34 Formats of shift/rotate instructions.

64 The 8086 Primer

There is no distinction between doubling a signed number and doubling an
unsigned number. So, in fact, SHL and SAL are simply two different names for
the same instructions.

The rotate instructions provide the ability to rearrange the bits in a number.
ROL (rotate left) and ROR (rotate right) permit left or right rotation of the bits:
the bit that falls off one end is rotated around to fill in the vacated position on the
other end. Two other rotate instructions, RCL (rotate with carry left) and RCR
(rotate with carry right), permit the carry flag CF to participate in the rotation: the
bit that falls off one end winds up in CF, and the bit that was in CF is rotated
around into the vacated bit—sort of a computerized version of musical chairs.

The operand to be shifted or rotated can be in memory or in a register
(specified by a mod field and an r/m field in the instruction). Furthermore, the
operand can be 8 or 16 bits (specified by a w field). Another field, v, specifies
whether the shift or rotation is to be for a distance of one bit (v = 0) or any
number of bits (v = 1). In the latter case, the distance is specified in CL, the
COUNT register (another example of a specialized use of one of the general-
purpose registers).

Admittedly, one purpose of the v field is to provide for more efficient
multiple-bit shifts and rotations. (But be aware that it is more efficient to do a
2-bit shift by executing two 1-bit shifts with v = 0 than by loading a 2 into CL
and doing a shift with v = 1.) The primary purpose of the v field, however, is to
permit shifts and rotations over a variable number of bits (hence the reason the
field is called v). The variable shift instruction is used when the number of bits to
be shifted over is the result of a previous computation. Figure 3.35 shows an
example of a variable shift.

String Instructions

A string is simply a sequence of bytes or words in memory. A string
operation is an operation that is performed on each item in a string. An example
is a string move, which moves an entire string from one area of memory to

opcode v ow mod opcode r/m

|1 1010 0[1[1] F 110 1[0 1| CL:

shift/rotate | byte SHR 5
variable

BL

INSTRUCTION VARIABLE COUNT
INITIAL CONTENTS OF OPERAND FINAL CONTENTS OF OPERAND

Fig. 3.35 Example of a variable shift.

8086 Instruction Set 65

Table 3.9 String Primitives

MOVS move SOURCE = > DEST
UPDATE Si, DI

CMPS compare SOURCE—-DEST => ?
UPDATE SI, DI

SCAS scan AL-DEST => ?
UPDATE DI

LODS load SOURCE = > AL
UPDATE SI

STOS store AL = > DEST
UPDATE DI

AX is used in place of AL for word operations.

another. Since string operations usually involve repetitions, they could take a
long time to execute. The 8086 has a set of instructions that decreases the time
required to perform string operations. This speed up is accomplished by (1)
having a powerful set of primitive instructions so that the time taken to process
each item in the string is reduced, and (2) eliminating bookkeeping and overhead
that are usually performed between the processing of successive items. The string
primitives are summarized in Table 3.9.

Elementary String Instructions To illustrate how string instructions
speed up the processing of strings, consider how a sequence of bytes would be
moved. We’ll need some way of denoting where the bytes are now and where
we’d like them to be. Let’s use SI (SOURCE INDEX) and DI (DESTINATION
INDEX) for that purpose. Into SI we’ll place the offset in the current data
segment of the first byte in the sequence. Into DI we’ll place the offset to which
that byte should be moved. A likely place to store the count of the number of
bytes to be moved would be CX, the count register. If CX is initially zero, no
bytes should be moved. The steps for performing the string move are as follows:

If CX contains zero, we’re done.

Fetch the byte whose offset is contained in SI.

Store that byte into the location whose offset is contained in DI.
Increment SI by 1.

Increment DI by 1.

Decrement CX by 1.

Go back to step 1 and repeat.

NounkwN -

Steps 2 and 3 perform the actual move of each byte. Steps 4 through 6 are
bookkeeping. Steps 1 and 7 are overhead. The actual move of each byte can be
speeded up by having a 1-byte primitive instruction that transfers the byte whose
offset is contained in SI to the byte whose offset is contained in DI. Furthermore,
if that primitive instruction also incremented SI and DI, part of the explicit

66 The 8086 Primer

bookkeeping would be eliminated. With such a primitive, the string move is
simplified to the following:

1. If CX contains zero, we’re done.
2. Perform ‘‘move-primitive.”’

3. Decrement CX by 1.

4. Go back to step 1 and repeat.

Steps 1, 3, and 4 could be eliminated if the move-primitive were ‘‘souped
up’’ to incorporate a test-decrement-and-repeat based on CX. The result is a
single step that incorporates the move-primitive within it. The string move now
becomes as follows:

1. Soup up the accompanying primitive
la. Move-primitive

The 8086 has an instruction, MOVS (move string element), which is the move-
primitive described above. Furthermore, any string primitive can be ‘‘souped
up’’ by preceding it with a special 1-byte prefix called a repeat prefix. The
combination of the repeat prefix and the MOVS primitive forms a 2-byte instruc-
tion.

There can be a problem if the place that the sequence of bytes goes to
overlaps the place that it came from. For example, consider moving the five
bytes starting at offset 100 into the five bytes starting at offset 102 as shown in
Fig. 3.36. The bytes at 100 and 101 are copied successfully into 102 and 103.
But when it comes time to copy the byte from 102 into 104, a problem occurs; the
byte in 102 is not the byte that was there originally but rather the byte that came
from 100. So the byte from 100 gets copied again, this time into 104. Eventually
it will also get into 106. Similarly, the byte from 101 will wind up in 103 and
105.

This problem would have been avoided completely if the bytes were moved
in reverse order, specifically the byte from 105 moved first, then the byte from
104, and so forth. However, if the overlap were in the opposite direction (100
through 104 into 98 through 102), the reverse move would have the problem, and
the forward move would work properly.

before after
O +
100 100} !
S +
101 \101 ! !
102 \102
103 \103
104 \104
105} ! 105
S +
106} | 106
pmmm—m——— +

Fig. 3.36 An overlapping move.

8086 Instruction Set 67

Let me point out that one man’s problem might be another man’s blessing.
The ‘problem’’ with overlapped string moves becomes a useful feature when we
need to repeat a pattern of bytes over a portion of memory.

The 8086 has a flag called DF (direction flag), which governs the direction
in which strings are processed. if DF = 0, strings are considered as progressing
in the forward direction (toward higher addresses) starting from the offsets in SI
and DI. If DF = 1,they progress in the reverse direction. This will tell the string
primitives to decrement rather than increment SI and DI. Thus, if an overlapped
move moves bytes to higher offsets (thereby necessitating a reverse move), DF
should be initialized to 1. Depending on the setting of DF, SI and DI will contain
either the lowest offsets (DF = 0) or the highest offsets (DF = 1} in the strings.
Instructions for setting and clearing DF (STD, CLD) will be discussed later under
Flag Instructions.

To facilitate moving strings from one segment to another, it would be
convenient if SI and DI were offsets into different segments. We stated that SI
contains the offset into the current data segment. However, we didn’t reveal to
which segment the offset in DI refers. It would be most fortunate if the primitive
string instructions were designed so that they use DI as an offset into the current
extra segment. They were! Now to move a string from one segment to another,
start by loading DS and ES with the appropriate segment start addresses, and SI
and DI with the appropriate offsets within those respective segments. A string
move within a segment is accomplished by loading DS and ES with the same
value.

Certain string operations are more efficiently performed on words instead
of bytes. A move, for example, would go much faster if the elements being
moved were words. To allow for word strings, each string primitive instruction
contains a 1-bit w (width) field that distinguishes between byte operations (w =
0) and word operations (w = 1). The move-primitive for words is similar to the
move-primitive for bytes except that SI and DI are incremented (decremented if
DF = 1) by 2 instead of by 1. CX, however, is always decremented by 1, and we
must therefore initialize it to contain the number of words (not bytes) if we are
using word primitives.

Now let’s consider another string operation, namely scanning through a
sequence of bytes to find a particular value. For example, if the bytes contain
ASCII character codes, this operation finds the first occurrence of a specific
character in a message. Let us again use SI to contain the offset of the sequence
and CX to contain the number of bytes in the sequence. Place the specific byte
being searched for into AL. The steps for performing the scan are shown below:

If CX contains zero, we’re done.

. Fetch the byte whose offset is contained in SI.

3. Compare it to the byte in AL (comparing means subtracting and setting
flags, ZF in particular).

4. Increment (decrement if DF = 1) SI by 1.

N

68 The 8086 Primer

REP--repeat prefix
REPNE/REPNZ—repeat while not equal/not zero (z=0)
REPE/REPZ—repeat while equal/zero (z=1)

oo T

MOVS—move string elements

1010011

CMPS—compare string elements

1010111

SCAS—scan for string element

1010110

LODS—load string element

1010101

STOS—store string element
Fig. 3.37 Format of REP prefix and string primitives.

5. Decrement CX by 1.
6. If ZF = 0, then the two bytes were not identical; so go back to step 1
and repeat.

Steps 2, 3, and 4 are done by the 8086 scan-primitive SCAS (scan string ele-
ment). Steps 1, 5, and 6 are done if the scan-primitive is ‘‘souped up’’ with the
repeat prefix. Word scanning (w field = 1) is similar to byte scanning except that
AX is used in place of AL, and SI is incremented (decremented) by 2 instead of
by 1.

Note that the repeat prefix behaves slightly differently with the scan-
primitive than it does with the move-primitive: with the scan it tests the ZF flag
before deciding to repeat. In general, the repeat prefix will test the ZF flag
whenever the accompanying primitive string instruction is one which may mod-
ify the ZF flag. (MOVS never affects the ZF flag; SCAS sets or clears ZF
depending on whether the bytes match or not.)

Another string operation is scanning through a sequence of bytes looking
for any byte other than a particular byte. An example would be finding the first
non-zero entry in a table. This is done by using the repeat prefix on the scan-
primitive instruction as was done in the previous scanning operation, except that
now the condition for repetition is ZF = 1. Since the testing of ZF is dictated by
the repeat prefix, that prefix must indicate which value of ZF is to cause repeti-
tions. This is specified by a 1-bit z field in the repeat prefix. The z field is ignored
when the repeat prefix is used with string primitives, such as MOVS, which
never modify the ZF flag. The form of the repeat prefix and of the string
primitives (including a sneak preview of those primitives about to be discussed)
is shown in Fig. 3.37.

8086 Instruction Set 69

The next string operation is comparing two sequences of bytes to see which
one should come first. In particular, if the bytes contain ASCII character codes,
this operation puts the sequence in lexicographical order (lexicographical is
simply a fancy term for alphabetical but takes non-alphabetic characters into
account as well). Again assume that the offsets of the two sequences are in SI and
DI, and the number of bytes to be compared (size of the shorter sequence) is
contained in CX. The steps for performing the string comparisons are as follows:

If CX contains zero, we’re done.

Fetch the byte whose offset is contained in SI.

Compare it to the byte whose offset is contained in DI.

Increment (decrement if DF = 1) SI by 1.

Increment (decrement if DF = 1) DI by 1.

Decrement CX by 1.

If ZF = 1, the two bytes are identical, so go back to step 1 and repeat.

NO LR W

Steps 2, 3, 4, and 5 are done by the 8086 compare primitive CMPS (compare
string elements), and the remaining steps are done if a repeat prefix (with a 1 in
the z field) is appended to the CMPS instruction. Word comparing is similar to
byte comparing, except SI and DI are incremented or decremented by 2 instead
of by 1.

A word of explanation is in order here. As long as the bytes being com-
pared in step 3 are identical, the zero flag (ZF) will be set to 1 and step 7 will
keep looping back. The looping ends when either the two bytes are not identical
(step 7 will no longer loop back) or the end of the shorter string is reached (step 1
will skip us out of the loop). After the looping ends, we can test ZF to see if we
reached the end of the shorter string. (ZF will still be 1 in that case.) If we did
not, we can test the carry flag (CF) to determine which string is greater (CF = 1
means the string pointed at by DI is greater).

The final two string primitives are LODS (load string element) and STOS
(store string element). The load-primitive loads the byte or word whose offset is
contained in SI into AL or AX and increments (decrements if DF = 1) SI by 1 or
2. The store-primitive stores the byte or word contained in AL or AX into the
byte or word whose offset is contained in DI and increments (decrements if DF =
1) DI by 1 or 2. Unlike the previous primitives, these two primitives were not
intended to be used with the repeat prefix. They were included for use in building
up more complicated string operations. However, the store primitive does per-
form a useful function when used in conjunction with the repeat prefix: it fills
every byte or word of a sequence with the same value. (This could also be done
with an overlapped string move but slightly less efficiently, requiring two strings
instead of one.) A repeat prefix on the load-primitive does nothing useful: it
repeatedly loads AL or AX with successive bytes or words in a sequence, each
time destroying the previous value loaded.

Complex String Instructions The five primitive string instructions pro-
vide the most common string operations. It would be a hopeless task to provide a

70 The 8086 Primer

primitive instruction for all conceivable operations. A strategy that makes more
sense is to provide a means of building up efficient complicated string instruc-
tions, possibly using some of the primitives as building blocks. As an example,
consider the operation of negating a sequence of bytes where each byte represents
an 8-bit signed number. Let SI contain the offset of the first byte of the sequence,
and let DI contain the offset of where the first byte of the negated sequence is to
be placed. Let CX contain the count of the number of bytes in the sequence. The
steps for performing this operation are as follows:

If CX contains zero, we’re done, so skip over the following steps.
Fetch the byte whose offset is contained in SI.

Increment SI by 1.

Negate the byte fetched.

. Store the result into the byte whose offset is contained in DI.
Increment DI by 1.

Decrement CX by 1.

Go back to step 1 and repeat.

BNO LA LN

Analogous to the previous examples, we would like to have a primitive instruc-
tion that performs steps 2, 3, 4, 5, and 6. There is none! So the next best thing
would be to build up these steps from 8086 instructions. If some of the building
blocks are string primitives, the incrementing of SI and DI can be done at no
additional expense. Specifically, steps 2 and 3 can be done by the load-primitive,
4 by a negate instruction, and 5 and 6 by a store-primitive. This simplifies the
task to:

. If CX contains zero, we’re done; so skip over the following steps.
Perform ‘‘load-primitive.”’

Negate byte in AL.

Perform *‘store-primitive.”’

Decrement CX by 1.

Go back to step 1 and repeat.

SUE LN

Steps 1, 5, and 6 were previously accomplished by ‘‘souping up’’ a string
primitive with the repeat prefix. In this case, the body of the loop consists of
more than just a string primitive, and thus the repeat prefix cannot be used. What
is needed are a few efficient instructions that simulate the complex actions of the
repeat prefix. Step 1 requires a conditional jump instruction that jumps if CX
contains zero. The destination of the jump should be specified in as few bits as
possible. So naturally the 8086 has an instruction, JCXZ, that will jump if CX
contains zero. The destination of the jump is specified in a single byte of the
instruction; that byte contains the difference (as a signed number) between the
offset of the destination and the offset of the JCXZ instruction. Our next wish
would be for an instruction that decrements CX and then jumps unconditionally.
That instruction also exists and is called LOOP; the destination of the jump in a

8086 Instruction Set 71

LOOP instruction is specified in a single byte exactly as was done in JCXZ. The
example now becomes the following:

1. JCXZ over the following steps.
2. Perform ‘‘load-primitive.’’

3. Negate the byte in AL.

4. Perform ‘‘store-primitive.’’

5. LOOP back to step 1.

Each step represents a single 8086 instruction.

The LOOP instruction introduced above does an unconditional jump. But
we have already seen that for some string operations, it is desirable to loop based
on the setting of the ZF flag. The corresponding 8086 instructions are LOOPZ
(loop if ZF set) and LOOPNZ (loop if not ZF set). Of course, both LOOPZ and
LOOPNZ decrement CX before looping. Alternate names for these instructions
are LOOPE (loop if equal) and LOOPNE (loop if not equal); these names more
clearly indicate the underlying condition on which we are looping.

As an example of using the LOOPNZ instruction, consider the previous
example of negating a sequence of bytes. However, this time the number of bytes
is unspecified. It is known that none of the bytes in the sequence is zero.
However, the sequence is followed by a zero byte. The steps now become as
follows:

Perform ‘‘load-primitive.”’
Negate byte in AL.
Perform ‘‘store-primitive.’’
4. LOOPNZ back to step 1.

W=

Note that the initial JCXZ instruction is not necessary here (why?).

The forms of the instructions that simulate the repeat prefix are shown in
Fig. 3.38.

Let us wrap up the discussion on strings by considering an example that
translates numbers between O and 15 into a Gray code. A Gray code has the

I111000ﬂ r diff J

LOOP—loop

h110000|z| | aiff |
LOOPNZ/LOOPNE—Ioop while not zero/not equal (z=0)
LOOPZ/LOOPE—Ioop while zero/equal (z=1)

h11ooo11J [diff _|

JCXZ—jump on CX zero

Fig. 3.38 Format of instructions simulating REP prefix.

72 The 8086 Primer

property that only one bit changes between adjacent values. An example of a
Gray code for the numbers O through 15 is the following:

Binary Gray
0000 0000
0001 0001
0010 0011
0011 0010
0100 0110
0101 0100
0110 0101
0111 0111
1000 1111
1001 1110
1010 1100
1011 1101
1100 1001
1101 1011
1110 1010
1111 1000

Assume that there is a sequence of bytes starting at offset 100 in the current data
segment and containing binary numbers between 0 and 15. Also assume that CX
contains the number of bytes in the sequence. Furthermore, assume that BX
contains the offset of the first byte of a 16-byte Gray code translation table,
which is simply the 16 values given above. Notice that conditions are ideal for
using the XLAT instruction. Let us place the translated sequence into the extra
segment starting at offset 50. The steps for pulling this off are as shown:

Move 100 into SI.

Move 50 into DI.

JCXZ over the following steps.
Perform ‘‘load-primitive.”’
XLAT.

Perform ‘‘store-primitive.”’
LOOP back to step 3.

Sk W

~

The XLAT instruction fits in perfectly with string loops as if it were designed for
this purpose. It was!

Unconditional Transfer Instructions

The main types of unconditional transfer instructions in the 8086 are
jumps, calls, and returns. Jumps load a value into the instruction pointer, thereby
breaking the sequential execution of instructions. Calls do the same thing, but
first they save the current value of the instruction pointer on the stack so that at
some time in the future execution can continue from where it left off. Returns

8086 Instruction Set 73

occur at that time in the future: they remove an entry from the stack and place ii
back into the instruction pointer, thereby resuming the previous execution. Calls
and returns are the mechanism used to invoke subroutines. But all this is nothing
new.

What is new is that the calls, jumps, and returns come in two flavors—
intrasegment and intersegment. The intrasegment ones transfer control within the
current code segment. The intersegment ones transfer control to an arbitrary code
segment (by changing the contents of CS), which then becomes the current code
segment.

Obviously, intersegment transfers can do everything that intrasegment
transfers can do and then some. Why then do we need both? Simply because
intersegment transfers take longer to execute (they have more to do); and, with
the exception of returns, they require more bytes of code (they have more to say).

As an example of an intersegment jump, suppose the current code segment
starts at BOOOO (hexadecimal) and that the instruction pointer contains 00AQ
(hexadecimal). That means the next instruction to be executed is at BOOAO.
Suppose at location BOOAO we have placed a jump instruction that will transfer
control to location A0100 (hexadecimal). But the current code segment ranges
from B0O0OO to BFFFF, and hence a jump to location AO100 would have to be an
intersegment jump. Such an intersegment jump would have to specify a new
value for CS (possibly A000) as well as a new value for IP (0100). This example
is shown in Fig. 3.39.

An intersegment call saves the current value of the code segment register,
as well as the instruction pointer, on the stack. An intersegment return removes
two 16-bit values from the stack and places them into the instruction pointer and
code segment register. This is in contrast to the intrasegment call and return,
which save and restore the instruction pointer only.

memory

Cs: B 0 0 04} —»B0000

L——»-B00A0 JMP

o

}new P
}new Cs

Fig. 3.39 Example of an intersegment jump instruction.

-

Plofofo
ofo

74 The 8086 Primer

The preceding example, besides illustrating an intersegment jump, illus-
trates another concept—namely a direct jump. A direct jump (or call) tells us
immediately where to go. An indirect one gives us the runaround: it tells us
where to go to find out where to go. Indirect transfers are useful when we don’t
know where we want to go but must first compute it. For example, an indirect
intersegment jump or call uses a mod field and an r/m field to specify the first of
four consecutive bytes in memory (there are no 4-byte registers). These four
bytes would contain the new value of IP (two bytes) followed by the new value of
CS (two bytes). These values could have been computed by the preceding in-
structions.

Returns never tell us where to go; instead, they tell us to return from where
we came. Thus the concept of an indirect return makes no sense. The forms of
the unconditional jumps, calls, and returns are shown in Fig. 3.40.

An intrasegment jump specifies a new value for the instruction pointer but
not for the code segment register. Consider, for example, a jump instruction at
offset 01A8 in the current code segment. This jump instruction is to cause the
program to jump back by eight bytes to offset 01A0. The value 01A0 could have
been contained in two bytes of the jump instruction; and, indeed, in many other
processors it is. But this has two disadvantages. First, many jumps are to nearby
places, and yet the instruction must dedicate two bytes to specifying the jump
destination. Second, if for some reason the entire section of code from offset
01A0 to 01BO must be moved and placed at offset 0500 to 0510, the jump
instruction specifying offset 01A0 would no longer jump back by eight bytes.
(Sections of code that can be moved and still execute properly are sometimes
called position-independent code.) If the jump instruction did not specify 01A0
but merely specified —8, then (1) the jump destination fits in one byte and (2) the
code is position-independent. Thus direct intrasegment jumps and calls specify
not the destination offset, but rather the difference (as a signed number) between
the destination offset and the offset of the jump or call instruction. Furthermore,
if that difference for a jump instruction can fit into eight bits (a very frequent
occurrence), a short form of the direct intrasegment jump instruction can be used
which is one byte shorter than the regular direct intrasegment jump. There is no
short form of the call instruction because calls to nearby locations are not that
frequent an occurrence.

We've just seen two good reasons for using differences (relative offsets)
rather than actual offsets as jump destinations. Let’s make sure there isn’t a good
reason for not using relative offsets. An actual offset is a 16-bit unsigned number
(from O to 65535) and can designate any location in the current code segment.
Can a relative offset, which is a signed number (from —32768 to +32767), cover
the same range? For instance, is there a relative offset that could be used by a
jump instruction at offset O to get to offset 65535? The largest positive relative
offset is +32767, and this will take us only halfway there. So let’s consider
negative relative offsets. Since the jump instruction is already at the lowest offset
in the segment, where will a negative relative offset of —1 take us? Answer: to

8086 Instruction Set 75

the highest offset in the segment, namely 65535 (by processor design). In fact,
the jump instruction at offset O can get to any offset from 32768 to 65535 by
using a negative relative offset. It is clear from this discussion that relative offsets
can take us from a jump instruction located anywhere in the segment to any other
location in the segment.

|1 110100 1J I— diff-low | L diff-high J

JMP—jump direct intrasegment

|11101011| [diff —I

JMP—jump direct intrasegment (short)

|11111111| Imﬂ1oo[r/m]

JMP—jump indirect intrasegment

[1 1101010 | offsetiow | L offset-high l

r seg-low] L seg-high I

JMP—jump direct intersegment

|11111111] lmodl101l_r/mJ

JMP—jump indirect intersegment

[f110100 o] L diff-low | [diff-high |
CALL—call indirect intrasegment

[11111111] |E°_°l°‘°J;"“J

CALL—call indirect intrasegment

I1 001101 0] I offset-low l L offset-high]

l seg-low I I seg-high__l

CALL-—call direct intersegment

[11111111] hogl011]r/ml

CALL—call indirect intersegment

11000011

RET—return intrasegment

|1 1700001 o] r data-low] I data-high |

RET—return intrasegment, adding immediate to SP

11001011

RET—return intersegment

[P 1001010 [dataiow | | catahign]

RET—return intersegment, adding immediate to SP
Fig. 3.40 Formats of unconditional jumps, calls, and returns.

76 The 8086 Primer

The preceding discussion about using relative offsets rather than actual
offsets does not apply to indirect jumps or calls, nor does it apply to intersegment
jumps or calls. There are several reasons for this:

1. Indirect jumps and calls do not specify the destination; they specify
where to find the destination. More than one indirect jump or call could
specify the same place at which the destination is to be found. Thus the
concept of relative offset has little meaning since we don’t know which
instruction it is to be relative to.

2. Intersegment jumps and calls specify destinations in some other code
segment. If a section of code containing intersegment jumps or calls is
moved, the destination, being in some other segment, would not neces-
sarily also be moved. Hence using relative offsets would not lead to
position-independent code.

3. The destination of an intersegment jump or call is not necessarily to a
nearby place, and thus there is no reason to expect to save any bytes by
using relative offsets.

Before leaving the topic of unconditional transfers, one more thing needs to
be said about the return instruction. There is a variation of the return instruction
that, after restoring the instruction pointer and possibly the code segment register
(with values popped off the stack), adds a constant (contained in the instruction
as an immediate operand) to the stack pointer. This has the effect of popping and
discarding additional entries off the stack. Such entries could have been placed
on the stack prior to issuing the call instruction so that a sequence of values could
be passed to the subroutine being called. When the subroutine completes its work
and does a return, these values would no longer be needed. Such values are
called parameters. The form of the return instruction just described provides a
convenient way for a subroutine to discard its parameters. If such a return-and-
discard instruction were not provided, the parameters would have to be discarded
in the following manner:

1. Before using a return, the subroutine removes the saved value of IP (and
possibly CS) from the stack and puts it somewhere else in memory for
safekeeping. This uncovers the parameters that were sitting on the stack
just below the saved values of IP and CS.

2. The subroutine then adds a constant to SP. This has the effect of
popping and discarding the parameters.

3. The subroutine then replaces the saved values of IP and CS (that were
put somewhere for safekeeping) back onto the stack.

4. The subroutine then executes a return instruction.

Certainly the return-and-discard instructions make this task much simpler.
Another way to discard parameters is by decrementing the stack pointer

after the subroutine executes the return instruction. On first reading, this seems

almost as efficient as the return-and-discard instruction. But the decrementing of

8086 Instruction Set 77

the stack pointer cannot be done by the subroutine (it already returned), so it
would have to be done at every place the subroutine returns to. And when you
realize that the subroutine could be called from a large number of different
places, this solution starts looking less attractive.

The return-and-discard instructions use 16 bits to contain the number of
parameters (value that must be added to SP). Eight bits would have been suffi-
cient in all but exceptional cases, and the resulting instructions would have been
one byte shorter. However, in those rare cases where eight bits would be insuffi-
cient, the alternative method of parameter discarding as described above is too
unpleasant to think about. So the extra byte was put onto the instruction.

Conditional Transfer Instructions

The 8086 provides conditional jumps that, along with the compare instruc-
tion (CMP), determine the relationship between two numbers. This is done in
two steps. First the 8086 executes the compare instruction that performs a sub-
traction of the two numbers, sets the flags based on the result, and discards the
difference. It then executes a conditional jump instruction that tests the flags and
performs a jump if the flags indicate the two numbers satisfy a particular relation.
For example, suppose we wanted to execute certain instructions if the number in
BH is equal to the number in BL. This is done as follows:

. Compare BH to BL (flags become set).
. Jump to step S if zero flag, ZF, is 0.

. Special instructions to be

executed if BH = BL.

Nh W -

In this example, the compare instruction subtracted BL from BH and set the flags
based on the result. If BH = BL, the result is zero, and ZF would be set to 1.
Thus a test for equality is a test of ZF, and this is what was done by the
conditional jump in step 2. Specifically, if BH BL, ZF is 0 and steps 3 and 4
are skipped over.

The forms of the conditional jump instructions are shown in Fig. 3.41.
Note that each of them consists of an 8-bit opcode followed by eight bits specify-
ing the jump destination. The destination is specified as the difference between
the destination offset and the offset of the conditional jump instruction. As
already mentioned, this provides for position-independent code (jumps are rela-
tive) and code compaction (destination specified in only eight bits). But this also
limits conditional jumps to have a jump destination that is relatively close to
(within approximately 127 bytes of) the conditional jump instruction. It would
have used up too many opcodes if two forms (‘‘close’’ and ‘‘not-so-close’’) of
each conditional jump were provided. The ‘‘close’’ case occurs more frequently
and was therefore optimized at the expense of the ‘‘not-so-close’’ case (‘‘not-
so-close’’ conditional jumps can always be done in two instructions with a
‘‘close’’ conditional jump jumping around a ‘‘not-so-close’’ unconditional
jump).

The 8086 Primer

|0111o10ﬂ Fdiﬁ]

JE/JZ—jump on equal/zero

[o111o1o_1| I ditf I

JNE/JNZ—jump on not equal/not zero

|011111oo| rﬁdml J

JL/JJNGE—jump on less/not great or equal

|371111£l r—vdiﬁ 1

JNL/JGE—jump on not less/greater or equal

|011111_13| r—vdiﬂ]

JLE/JNG—jump on less or equal/not greater

[o1111111] r diff 1

JNLE/JG—jump on not less or equal/greater

F111oo1_o| | diff 1

JB/JNAE—jump on below/not above or equal

fori1o0019] | diff |
JNB/JAE—jump on not below/above or equal

|o111o11o] | diff 1

JBE/JNA—jump on below or equal/not above

|o111o111] | diff |
JNBE/JA—jump on not below or equal/above

|01111o1£| | diff |

JP/JPE—jump on parity/parity even

[01111011| [diff |

JNP/JPO—jump on not parity/parity odd

|o1110000| | diff]

JO—jump on overflow

lo111000ﬂ | diff J

JNO—jump on not overfiow

|o1111ooo] | diff |

JS—jump on sign

|o1111oo1| l—idiﬁ |

JNS—jump on not sign

Fig. 3.41 Formats of conditional jump instructions.

8086 Instruction Set 79

Besides testing for equality, it is often useful to know which number is
bigger. But this poses an interesting question. Is the 8-bit number 1111 1111
bigger than 0000 0000? The answer is both yes and no. If these numbers were
considered as unsigned binary numbers, the first number would have a value of
255, and this is indeed bigger than 0. But if the numbers were considered as
signed binary numbers, the value of the first number is —1, and this is smaller
than 0. So we see that there are two ways of looking at ‘‘bigger’’ and *‘smaller”’
depending on whether the numbers are signed or unsigned. We therefore intro-
duce some new terms to distinguish between the two cases. If we are comparing
the numbers as signed numbers, we use the terms less than and greater than, if
we are comparing them as unsigned numbers, we use below and above. So 1111
1111 is above 0000 0000 while, at the same time, it is less than 0000 0000. As
another example, 0000 0000 is both below and less than 0000 0001.

To summarize, the various relationships that could exist between two num-
bers are equal, above, below, less than, and greater than. Each of these condi-
tions can be determined by the flag settings after a compare instruction has been
executed; these flag settings were shown in Table 3.3. The 8086 provides condi-
tional jump instructions that test the flags to determine if any particular relation-
ship is or is not satisfied. The specific conditional jumps are as follows:

Name Meaning

JE jump on equal

JNE jump on not equal

JL jump on less than
JNL jump on not less than
IG jump on greater than
ING jump on not greater than
JB jump on below

INB jump on not below
JA jump on above

JNA jump on not above

Some other relationships might come to mind such as ‘‘less than or equal,”’ but
this is the same as ‘‘not greater than.’’ The following is a list of alternate names
for the jump instructions listed above:

Name Alternate Name Meaning for Alternate Name

JE JZ jump on zero

JNE INZ jump on not zero

JL INGE jump on not greater than or equal
JNL JGE jump on greater than or equal

IG JNLE jump on not less than or equal
ING JLE jump on less than or equal

| JB INAE jump on not above or equal

80 The 8086 Primer

Name Alternate Name Meaning for Alternate Name
JNB JAE jump on above or equal
JA JNBE jump on not below or equal
JNA JBE jump on below or equal

For reference, the actual flag settings for the various conditional jumps are shown
below:

Name Flag Settings

JENZ ZF =1

JNE/INZ ZF =0

JL/INGE (SF xor OF) =1
JNL/IGE (SF xor OF) = 0
JG/INLE ((SF xor OF) or ZF) = 0
ING/ILE ((SF xor OF) or ZF) = 1
JB/INAE CF =1

INB/JAE CF =0

JA {(CFor ZF) = 0

INA (CForZF) = 1

There are conditional jump instructions that are not concerned with the
relationship between two numbers but rather with the setting of a particular flag.
The JZ and JNZ instructions mentioned above are actually tests on the zero flag.
Also, it turns out that the JB and JNB instructions mentioned above are nothing
more than tests on the carry flag. Other conditional jump instructions that test the
setting of a particular flag are shown:

Name Meaning Flag Settings
JS jump on sign SF=1
INS jump on not sign SF=0
JO jump on overflow OF =1
JNO jump on not overflow OF =0
JP jump on parity PF =1
IJNP jump on not parity PF =0
Alternate names for the last two are given:
Name Alternate Name Meaning for Alternate name
JP JPE jump on parity even
IJNP JPO jump on parity odd
Interrupts

Most modern processors provide facilities for being interrupted by external
devices. This frees the processor from having to check periodically on such
devices to see if they are in need of any attention. For instance, instead of having
a processor frequently ask a keyboard if a key has been pressed and get back
negative responses most of the time, it would be more efficient for the processor

8086 Instruction Set 81

to ignore the keyboard but allow the keyboard to get the processor’s attention
when a key is pressed. The former method is referred to as polling, the latter as
interrupting.

Interrupt Mechanism The 8086 has two *‘apron strings’’ that external
devices can ‘‘tug on’’ to get attention. These ‘‘apron strings’’ are, in reality, two
pins on the processor chip called the NMI (non-maskable interrupt) pin and INTR
(plain old interrupt) pin. Let’s consider the NMI pin first. When an external
device places a signal on the NMI pin, the processor will stop whatever it’s doing
(but not in the middle of an instruction) and take care of this interruption.
However, the processor might have been in the middle of a very important task,
so external devices should refrain from causing such interruptions except in real
emergencies. An example of a real emergency is if an external device notices that
the line voltage has just passed through 100 volts and is dropping. The technical
term for this condition is ‘‘power failure.’’ In this case, the external device is
Justified in interrupting the processor to inform the processor that it hasn’t long to
live. In its few remaining milliseconds, the processor could then attempt to put its
affairs in order (like transferring important results to a safe place) before its little
oscillator stops ticking. Barring such emergencies, if an external device wishes to
interrupt the processor, it should use the INTR pin. The processor can choose to
ignore this pin if it is not in the mood. The ‘‘mocd”” is set by the interrupt-enable
flag (IF): when IF is 0, the processor will not respond to signals on the INTR pin.
Interrupts are said to be enabled when IF = 1 and disabled when IF = 0.
Instructions for setting and clearing IF (STI, CLI) will be discussed later under
Flag Instructions.

Besides placing a signal on the INTR pin, the external device must convey
the reason for the interrupt to the processor. There may be any number of reasons
(let’s say 256) for an interrupt on the INTR pin, while there is only one reason
(impending doom) for an NMI interrupt. The external device will, upon request
of the processor, supply a number between 0 and 255 representing the reason for
the INTR interrupt. This number is often referred to as the interrupt type. For
each different interrupt type, the processor has a program that it must execute
before resuming its normal tasks. The addresses of these programs are contained
in a 256-entry table. Each entry is four bytes long and contains the value of CS
and IP corresponding to the beginning of the programs for a particular interrupt
type. The table starts at memory address O as shown in Fig. 3.42. The programs
that are executed when interrupts occur are often referred to as interrupt routines.

Now let’s see what the processor does when it receives an interrupt on its
INTR pin and interrupts are enabled (IF = 1). After completing the execution of
the current instruction, the processor stops doing whatever it was doing and
prepares to execute the piece of code corresponding to the type of the interrupt.
First, the processor saves all relevant information about what it was doing, so
when it finishes executing the interrupt routine, it can resume what it was doing.
A convenient place to save this information is on the stack. The values to be
saved are the current values of all flags, the current value of CS, and the current

82 The 8086 Primer

memory address
(hexadecimal) memory

00000
00001
00002
00003
00004
00005
00006
00007

interrupt type 0

interrupt type 1

003FC
003FD
003FE
003FF

interrupt type 255
cs

Fig. 3.42 Table of interrupt-code addresses.

value of IP. Next, the processor gets the interrupt type from the external device
and places the table entries corresponding to that type into IP and CS. For
example, suppose the external device supplied type 0001 (hexadecimal). In this
case, the 16-bit value starting at address 00004 is placed into IP, and the 16-bit
value starting at address 00006 is placed into CS. Thus the next instruction to be
executed is the first instruction in the interrupt routine coresponding to interrupt
type 1.

When the processor receives an interrupt on its NMI pin (regardless of the
setting of the interrupt-enable flag IF), it will do everything that it did for INTR
interrupts with one exception. It will not need to get the interrupt type from the
external device since there is only one possible reason for an NMI interrupt. The
type 2 entry in the interrupt table is reserved for locating the NMI interrupt
routine; hence the table entries for type 2 are placed into IP and CS. Other
reserved entries in the interrupt table (including those that might be used by
future versions of the 8086) are shown in Fig. 3.43.

Two more reserved interrupt types are division by zero (type 0) and signed
overflow (type 4). Like the NMI interrupt, processing of these two interrupts
does not depend on the value of the interrupt-enable flag (IF). (In fact, this
statement is true for all the reserved interrupt types.) The processor itself au-
tomatically generates a type O interrupt whenever it attempts to divide by zero.
Thus the type O entry in the table should contain the IP and CS values for a
routine that recovers from such a division. Although signed overflow is also a
serious matter, the processor does not automatically generate an interrupt when
signed overflow occurs. This is because the same ADD instruction is used for
both signed and unsigned arithmetic, and the processor has no way of knowing if
signed addition was actually intended (the same is true for subtraction). How-

8086 Instruction Set 83

ever, the processor does provide an efficient (1-byte) instruction that generates a
type 4 interrupt if the overflow flag (OF) is set. This instruction, INTO (interrupt
on overflow), should follow 2very arithmetic instruction applied to signed num-
bers whenever the potential for overflow exists.

Now let’s consider the interrupt routine itself. The interrupt routine does
not have to feel guilty about altering values in flags because the initial values of
the flags were already saved. However, if the interrupt routine alters any other
important item (items that the interrupted program could have been using—AX,
for instance), the interrupt routine must first save the initial value of that impor-
tant item. Before the interrupt routine terminates, it must restore any of these

00
P
01
type O reserved for division by zero
02
Ccs
03
04
P
05
type 1 reserved for single stepping
06
cs
07
08
P
09
type 2 reserved for NMI interrupts
0A
Ccs
08
ocC
P
oD
oE] type 3 reserved for 1-byte INT instruction
Cs
OF
10
P
1
type 4 reserved for signed overflow
12
Cs
13
14
P)
15
16
cs
17
1
types 5 through 31 reserved for future expansion
P e
7C
P
7D
7E
Cs

7F

Fig. 3.43 Reserved interrupt types.

84 The 8086 Primer

|11oo11o1] | type |
INT—interrupt of specified type

11001100

INT—interrupt of type 3

11001110

INTO—interrupt on overflow

11001111

IRET—interrupt return

11110100

Fig. 3.44 Formats of interrupt instructions.

g
L
n-'_)

important items that it saved. Finally, the interrupt routine terminates by execut-
ing an instruction called IRET (interrupt return) that restores the values of IP,
CS, and the flags saved on the stack. Note that the interrupt return differs from
the intersegment return discussed previously only so far as restoring the flags is
concerned. They both restore IP and CS.

Another instruction usually associated with interrupts is the HLT (halt)
instruction. HLT stops the processor and leaves CS and IP pointing to the
instruction following the HLT. When an interrupt comes along, these values of
CS and IP are saved on the stack and the processor starts executing
instructions—specifically, the instructions in the interrupt routine. When the
IRET instruction is encountered, the saved values of IP and CS are restored. At
this time the processor doesn’t remember that it was resting prior to receiving the
interrupt. So it will proceed to execute the instruction that CS and IP are now
pointing to—namely the instruction following the HLT. So, in effect, HLT
provides the processor with a way to relax while waiting for an interrupt.

Now consider all those interrupt routines, 256 of them, sitting at various
places in memory waiting for interrupts to occur so they can get called into
execution. Some of them might be useful to invoke even when no interrupt
occurs. Since the values of IP and CS needed to execute the routines are con-
tained in four consecutive bytes in memory, it appears as though we could invoke
an interrupt routine by simply executing an indirect intersegment call instruction
that specifies those four bytes. But beware! The interrupt routine does not end
with a normal return instruction; it ends with an IRET, which will attempt to pop
the saved flags off the stack. So the flags had better be on the stack if this return
is to work properly. This could be accomplished by preceding the indirect inter-
segment call instruction with a push flag (PUSHF) instruction. But this is getting
cumbersome. What would be nice is a single instruction that does everything the
processor does when it recognizes an interrupt with one exception—the interrupt
type is specified in the instruction rather than supplied by the external device.

8086 Instruction Set 85

This instruction is INT (interrupt), and its format, along with the formats of other
instructions related to interrupts (IRET, INTO, and HLT), is shown in Fig. 3.44.
The value of the interrupt-enable flag (IF) has no effect on the execution of the
INT instruction.

Debugger Requirements Notice that there are two forms for the INT
instruction. In the first form, the instruction is two bytes long, and the second
byte specifies the interrupt type. In the second form, the instruction is one byte
long, and the type is implicitly type 3 (see reserved types in Fig. 3.43). The fact
that it is type 3 is irrelevant (it could have been any type), but the fact that it is
one byte long is significant. A 1-byte INT instruction is essential for the opera-
tion of a software debugging program. To understand why, we have to learn
something about how software debuggers work.

A software debugger is an interactive program you can use to find out why
the program you wrote doesn’t work properly. A common thing you might want
to do is tell the debugger to run your bad program until the instruction at a certain
address, say 100, is about to be executed. In debugging jargon, this is referred to
as ‘‘setting a breakpoint’’ at address 100. The debugger sets a breakpoint by
planting an instruction at address 100 that will transfer control back to the
debugger. The debugger can now let your program run, and when your program
reaches address 100, it will transfer back to the debugger. Naturally the debugger
would save the original contents of address 100 prior to setting the breakpoint
and will restore the original contents after control returns to the debugger.

Now the question remains as to which 8086 transfer instruction to plant at
address 100. A jump instruction would work fine if there were only one break-
point set at any given time. However, if more than one breakpoint is set, the
debugger would need to know which breakpoint was actually reached. The INT
instruction is ideal since it saves information (CS and IP) that locates the break-
point. Using the 2-byte INT instruction to set a breakpoint at address 100 would
mean that the contents of both 100 and 101 would have to be overwritten. The
debugger would save and eventually restore the original contents of both bytes.
In most cases this would present no problems. However, sooner or later you’ll
write a program, such as the one in Fig. 3.45, that jumps around and executes the
instruction at 101 prior to executing the instruction at 100. But the instruction at
101 has been temporarily overwritten by the second byte of the INT instruction
planted at 100. This is the reason the debugger must use a /-byte INT instruction.
The debugger will be using the 1-byte INT instruction to generate type 3 inter-
rupts when programs are being debugged; therefore, you should not use the
1-byte INT instruction or any type 3 interrupts in your program if you ever intend
to use a software debugger to debug your program.

Another facility intended for the use of debugger programs is the trap flag
(TF). Whenever this flag is set, the processor will execute a single instruction
and then generate an interrupt of type 1 (see Fig. 3.46). This permits the debug-
ger to execute your program, one instruction at a time, and examine what was
done after each instruction. Such a mode of execution is referred to as single

86

The 8086 Primer

|

read value
into AL

I

do things
involving
value in AL

I increment AL l

yes
AL<5? -
no
address instruction
90,91 read value from port 1 into AL (IN — 2 bytes)

101,102
103,104

go to 101 (JMP — 2 bytes)

do things involving value in AL
increment AL (INC — 1 byte)
compare AL to 5 (CMP — 2 bytes)
go to 94 if less than (JL — 2 bytes)

Fig. 3.45 Program that executes address 101 prior to executing address 100.

.

your program

instruction
instruction
instruction
instruction
instruction
instruction
instruction
instruction
instruction

* instruction

instruction
instruction

instruction

program
flow
type 50 interrupt routine
modify TF image on stack
IRET
type 1 interrupt routine
display all registers
etc IRET

** indicates occurrence of interrupt of type 50

Fig. 3.46 Executing a program in single-step mode.

8086 Instruction Set 87

stepping. (Don’t worry about repeated string instructions; single stepping
through them will cause an interrupt after each repetition instead of waiting for
the end of the entire instruction.)

The debugger can cause your program to execute in single-step mode by
modifying the set of flags saved on the stack by a previous interrupt so that the
saved value of TF is 1, and then executing an interrupt return (IRET) instruction.
Since it is the debugger and not your program that decides when your program is
to switch into single-step mode, there is no need for an instruction to set or clear
TF. For example, suppose your program is executing at full speed. You would
like to stop it and have it then resume one instruction at a time. After each
instruction you want to examine the contents of all the registers so you can
determine if the program is behaving the way you expected. You can stop your
program by placing a signal on the INTR pin and providing the processor with an
interrupt type, say 50. The processor will stop executing your program (provid-
ing IF = 1) and save the values of the flags, CS, and IP on the stack. Then it will
start to execute the interrupt routine for type 50. In that routine, you have code
that goes to the stack and sets the saved value of TF to a 1. The interrupt routine
then executes an IRET to restore the saved values of IP, CS, and flags. These are
the values that existed when you interrupted your program, except that TF now
contains a 1. As aresult, your program will execute a single instruction, and then
a type 1 interrupt will be generated. In response to this interrupt, the processor
will save the values of the flags (with TF = 1), CS, and IP on the stack and will
start to execute the interrupt routine for type 1. To prevent the processor from
single-stepping through the interrupt routine, TF is automatically cleared after
the flags are saved on the stack. The interrupt routine for type 1 should have code
that displays the contents of all registers. The final instruction of this interrupt
routine is again IRET, which restores the saved values of IP, CS, and flags. So
once again TF is 1, and the above process will be repeated. This is illustrated in
Fig. 3.46. The type 1 and type 50 interrupt routines just described are part of
what we have been calling the debugger.

An 8086 Mistake Let’s consider the instruction that moves a new value
into the stack segment register (SS). This instruction is one of two MOV instruc-
tions that must be executed if we want to change to another stack (a useful
operation when the processor is alternately executing more than one program,
each with its own stack). The second MOV instruction moves a new value into
the stack pointer register (SP). After both MOV ’s are executed, the SS and SP
registers together specify the location of the top of the new stack. However, after
the first MOV is executed but before the second, the combination of SS and SP
does not have any significance; it certainly does not specify the top of any area
reserved for a stack (except possibly by accident). This isn’t a problem unless
someone tries to push a value on the stack during the stack change. But that is
exactly what an external interrupt or a single-step interrupt might try to do if it
arrives at the wrong time.

88 The 8086 Primer

This mistake was not discovered until after the 8086 was designed and
built. After the mistake was discovered, the 8086 was modified so that it will not
accept any interrupts immediately after executing an instruction that moves a new
value into SS.

Flag Instructions

The 8086 has instructions for setting and clearing the carry flag (STC,
CLQC), the direction flag (STD, CLD), and the interrupt flag (STI, CLI). Fur-
thermore, it has an instruction for complementing the carry flag (CMC). These
instructions are summarized in Table 3.10. The uses of these flags have already
been discussed—the carry flag (CF) for multiprecision arithmetic, the direction
flag (DF) for string processing, and the interrupt flag (IF) for enabling and
disabling interrupts. The forms of the flag instructions are shown in Fig. 3.47.

Table 3.10 Flag Operations

CLC (clear carry) 0=>CF
CMC (complement carry) 1—-CF = >CF
STC (set carry) 1 =>CF
CLD (clear direction) 0=>DF
STD (set direction) 1 =>DF
CL (clear interrupt-enable) 0=>IF
STI (set interrupt-enable) 1=>IF

11111000

[@]

LC—clear carry

11110101

@]

MC—complement carry

11111001

STC—set carry

11111100

@]

LD—clear direction

11111101

 TD—set direction

11111010

ClLl-—clear interrupt

11111011

STl—set interrupt
Fig. 3.47 Formats of flag instructions.

8086 Instruction Set 89

Synchronization Instructions

Interrupts provide one means of synchronizing an 8086 with external de-
vices. There are two other forms of synchronization that the 8086 architecture
provides. The first involves using a subordinate processor to do things for the
8086 that the 8086 cannot do for itself. The second involves sharing resources
(such as memory) with other processors in a multiple-processor system. Both of
these cases will now be examined in detail.

Subordinate Processors Although the 8086 has a powerful instruction
set, there are still many instructions that it is lacking. For example, there is no
instruction to perform operations on floating-point numbers. Certainly you could
write a routine that performs an addition of two floating-point numbers, but this
is much less efficient than having a floating-point add instruction. A better
solution would be to have a separate processor capable of performing floating-
point operations and willing to offer its services to the 8086. If you had such a
floating-point processor, you could write floating-point instructions in your pro-
gram; the 8086 would invoke the floating-point processor whenever it encoun-
tered such instructions.

The subordinate processor operates by watching the 8086 and being con-
stantly aware of the instruction being executed. In particular, it is watching for
the special instruction ESCape, which is the embodiment of all instructions the
8086 needs help executing. The ESC instruction has a 3-bit field (x) indicat-
ing which subordinate processor is needed, and a 3-bit field (y) indicating the
instruction that processor should execute. Both of these fields are ignored by the
8086 processor. (This description is slightly simplified; in reality, the six ignored
bits may arbitrarily be used to distinguish 64 combinations of processor and/or
instructions.) Furthermore, the ESC instruction has a mod field and an r/m field
that designate a memory operand for the subordinate processor. These two fields
are indeed used by the 8086; the 8086 computes the memory address of the
operand and then actually reads the value of the operand from memory, although
it ignores the value when it gets it. The subordinate processor is watching all this
and now knows the address of the operand as well as the value of the operand.
The subordinate processor now has everything it needs (instruction and operand)
in order to execute the required operation.

The form of the ESC instruction is shown in Fig. 3.48 along with another
instruction, WAIT. The WAIT instruction is a synchronizing instruction; it is

10011011

WAIT—wait
|11o11| x—] Engdl y lr/m]
ESC—escape

Fig. 3.48 Formats of subordinate processor synchronization instructions.

90 The 8086 Primer

executed by the 8086 to determine when the subordinate processor finishes its
execution. When the subordinate processor is done, it puts a signal on a pin
named TEST on the 8086 chip. The WAIT instruction will hold up the 8086 until
it detects this signal on the TEST pin. Like the string instructions, the WAIT
instruction can be interrupted before the instruction is finished.

One way we could use WAIT and ESC is by preceding every ESC instruc-
tion with a WAIT instruction. We would then be assured that an instruction will
never be sent to the subordinate processor before that processor finishes execut-
ing any previous instructions sent to it. By placing the WAIT before the ESC
instead of after it, the 8086 can be doing other things while the subordinate
processor is executing an instruction.

As an example, suppose we have two floating-point numbers that we wish
to add together. Each number is four bytes long. The first number is contained in
the current data segment starting at the offset contained in SI, and the second
number is contained in the current data segment starting at offset contained in DI.
We want the floating-point sum to be placed in the current data segment starting
at offset contained in DI. Assume that we have a floating-point processor that
responds to ESC instructions having an x field value of 101 (binary). Further-
more, assume that the instructions the floating-point processor is capable of
executing are as follows:

001: Load operand into floating-point accumulator.
010: Add operand to floating-point accumulator.

011: Subtract operand from floating-point accumulator.
100: Multiply floating-point accumulator by operand.
101: Divide floating-point accumulator by operand.
110: Store floating-point accumulator into operand.

The floating-point accumulator is a register on the floating-point processor.

The 8086 sequence of instructions to accomplish the required addition is
shown in Fig. 3.49. The WAIT instructions keep the 8086 and the floating-point
processor synchronized while the ESC instruction passes information from one
to the other.

Resource Sharing Another form of synchronization is between two
processors sharing a common resource. For example, consider an airline reserva-
tion system in which computer processors from all over the country are making
entries into a common data base in some shared memory. Suppose one of the
processors wants fo make a reservation for Harry Jones on a flight from San
Francisco to New York. First, the processor will read the data base and discover
that there are indeed 15 seats available on that flight. It will then reserve a seat for
Harry by writing a 14 into that word of the data base that indicates the number of
available seats. But suppose after Harry’s processor reads the 15 and before it
writes back the 14, some other processor in another corner of the country tries to
make a reservation for William Smith on that same flight. William’s processor

8086 Instruction Set 9N

pcod: opcode mod Yy rim load operand
N : inted at

X
pointec
Foo11o11] [110111133 [37)[001[10ﬂ acy)aiil'\lgn—‘:oim
WAIT ESC FLT-PT NOAV accumulator

S|
ode opcode X mod y r/m add operand
i 2 pmr[l)t'ed at
101t1 110111014 00l0 111|101 by Dl to
froon [. [lof] Jooforaftod] oo
WAIT ESC FLT-PT L aoD / accumulator
Dt
opcode opcode mod Yy rm store contents of

floating-point

X
[footion 1 KKK 1} o_1| FE[1 1 0]1—0 1] accumulator into

operand pointed

WAIT ESC FLT-PT Qro /I at by DI

DI

Fig. 3.49 Example of instruction sequence that invokes subordinate processor
(see text).

also reads the vacancy count of 15 and reserves a seat by writing back a 14. It
doesn’t matter which processor writes the 14 first; after both processors complete
their transactions, the seat count has gone from 15 to 14 and two people both
think they have reservations (is that why airlines get overbooked?).

Perhaps we could have avoided the problem if Harry’s processor made
Harry’s reservation by reading the 15 and writing back the 14 all in one instruc-
tion. The DEC (decrement) instruction will do just that. If there are no seats
“available (count is zero), the DEC instruction will cause the count to go negative
(SF becomes 1); in that case, no reservation can be made, and an INC (incre-
ment) instruction should be executed to restore the count back to zero.

Now there is no way for both processors to decrement the same initial
count . . . unless William’s processor comes along right in the middle of Harry’s
DEC instruction, and you can just bet that one day that’s going to happen. In that
case, Harry’s DEC instruction will fetch a value of 15, then do the subtraction
(while William’s DEC instruction fetches the same 15), and then store back a 14
(while William’s DEC instruction does the subtraction). Finally, William’s DEC
instruction will store back a 14.

So it appears as though updating the count all in one instruction did not
completely solve the problem; it only reduced the likelihood of its occurrence.
What is still needed is a way for Harry’s processor to prevent all other processors
from accessing the data base while it is executing the DEC instruction. The 8086
accomplishes this by allowing any instruction to be preceded by a 1-byte lock
prefix. Execution of such an instruction will cause the processor to place a signal
on an 8086 output pin (called the LOCK pin) for the duration of the instruction.
The hardware of the airline reservation system can now be designed to give
exclusive memory access to any processor asserting the lock signal (if no other
processor can use the memory, then no other processor can access the data base).

3

92 The 8086 Primer

prefix opcode 5 mod opcode r/m
]t 1110000] [1111111[9] L]oo1[]
LOCK DEC byte DEC

Fig. 3.50 Example of an instruction with a lock prefix.

An example of the decrement instruction preceded by the lock prefix is shown in
Fig. 3.50.

A Postscript on Prefixes
We’ve now encountered all three 8086 instruction prefix bytes—segment-
override, repeat, and lock. Two questions come to mind:

1. Can any prefix be used on any instruction?
2. Can more than one prefix be used on an instruction?

With one exception, any prefix can be used with any instruction. The
exception is the repeat prefix, which may be used only with the string primitives.
Applying it to any other instruction could give unexpected results because of the
way the facility was implemented. The lock prefix can be applied to any instruc-
tion and will cause the processor to place a signal on its LOCK pin for the
duration of the instruction. This signal is typically used to provide exclusive
memory access to a processor (in a multiprocessor system) while executing an
instruction that both reads and writes memory (for example INC, DEC, XCHG).
However, the processor doesn’t care if you use the lock prefix with any other
instruction, even one that doesn’t access memory. And, finally, the segment-
overriding prefix can be used with any instruction. If the instruction accesses an
operand in memory, this prefix specifies the segment; otherwise it has no effect.

Now, let’s consider combinations of prefixes. The lock prefix and the
segment-overriding prefix can be used together and each will perform its desig-
nated function. The behavior of the instruction is not affected by the ordering of
the prefixes. The repeat prefix, however, has some problems when used with
other prefixes. For one thing, it must always be the last prefix because it can be
applied only to an unprefixed string primitive. For another, the combination of
the lock and repeat prefixes could prevent other processors in the system from
accessing memory for a relatively long time—the entire duration of the repeated
string instruction.

The combination of any prefix with a repeat prefix will make it impossible
to restart the string operation after being interrupted. To understand why, let’s
consider what happens when an interrupt occurs during the execution of a re-
peated string instruction. If the interrupt is forced to wait until all repetitions of
the instruction are completed, it might have to wait a (relatively) long time. So
the processor was designed to permit interrupts to be serviced after any repetition
of a string instruction. While the repetitions are occurring, the instruction pointer
contains the offset of the repeat prefix. If the instruction is interrupted, this is the
offset that is saved, and this is the offset at which execution resumes after the

8086 Instruction Set 93

interrupt processing is complete. If the instruction contains any prefixes prior to
the repeat prefix, they will not be part of the instruction when it is reexecuted
after being interrupted. (Note that the reexecuted string instruction does not redo
what was done during the initial execution; the count in CX and string pointers in
SI and DI were updated during each repetition prior to the interrupt, and the
second execution starts with these updated values.) This problem would not exist
if, during the repetitions, the instruction pointer contained the offset of the first
prefix byte of the instruction. This is a flaw in the 8086 design!

Another instruction that has a potential problem with prefixes is WAIT.
WAIT, like repeated string instructions, can be interrupted before it completes its
task. And for the same reasons given above, WAIT will lose its prefixes if
reexecuted after an interrupt. But the repeat prefix may not be used with WAIT,
and both the lock prefix and the segment-overriding prefix have no effect on
WAIT. So WAIT, with or without prefixes, will always restart properly after
being interrupted.

Flag Settings

Throughout this chapter, references have been made to the flag settings
following certain instructions. This section ties all that information together and
completely describes the behavior of the flags.

The 8086 flags can be divided into two types: status flags and control flags.
The former reflect properties of the results generated by certain instructions, and
the latter control the operations of the processor. Table 3.11 shows the instruc-
tions whose results affect the status flags and the instructions that are used to
establish the settings of the control flag. Let’s attempt to explain the behavior of
some of these flags.

Addition and subtraction instructions affect all status flags in the following
manner: the overflow flag (OF) and carry flag (CF) indicate if the instruction
resulted in a signed or unsigned result out of range; the auxiliary carry flag (AF)
indicates if a correction is needed for decimal operations; and the sign flag (SF),
zero flag (ZF), and parity flag (PF) indicate if the result is negative, zero, or
contains an even number of 1’s.

Grouped with the addition and subtraction instructions are the compare
instructions (CMP, CMPS, SCAS) and the negation instruction (NEG). The
compare instructions perform a subtraction, and the flags are set to reflect the
result of this subtraction. The NEG instruction adds 1 (after complementing all
bits), and the flags are set to reflect the result of this addition. The only time NEG
sets the carry flag to 1 is when the value being ‘‘negated’’ is zero; the only times
it sets the overflow flag to 1 is when the value being negated is —128 (eight bits)
or —32768 (16 bits).

The increment and decrement instructions affect the status flags in the same
manner as addition and subtraction instructions, except they do not affect the
carry flag. This gives us the ability to write a loop that performs multiprecision
arithmetic as follows:

Table 3.11 Flag Settings

The 8086 Primer

A-STATUS FLAGS

OF CF

AF

SF

ZF

PF

Addition & Subtraction
ADD ADC SUB SBC
CMP NEG CMPS SCAS

Increment & Decrement
INC DEC

Muttiplication & Division
MUL IMUL
Dliv DIV

Decimal Arithmetic
DAA DAS
AAA AAS
AAM AAD

Boolean
AND OR XOR TEST

Shift & Rotate

SHL SHR (unit)

SHL SHR (variable)

SAR

ROL ROR RCL RCR (unit)
ROL ROR RCL RCR (variable)

Restore Flags
POPF IRET
SAHF

Carry Flag Settings
STC
CLC
CMC

-~ +

-~

o+ O+

+

++ ++4+++ © o+ + o+

QO -

o+ +

I~~~

++

-~ +

P+ 4+

+ +

~+

L+ ++ 4

++

~+

Ll +++ +

+ +

B-CONTROL FLAGS

IF

Restore Flags
POPF IRET

Interrupts
INT INTO

Direction Flag Settings
STD
CLD

Interrupt Flag Settings
STI
CLI

Legend: + = affected
1=setto1
O0=setto0

* = complemented
? = undefined
— = unaffected

8086 Instruction Set 95

SI gets offset of least significant byte of first operand.

DI gets offset of least significant byte of second operand.

Clear carry (CLC).

Add-with-carry (ADC) byte pointed at by SI to byte pointed at by DI.
Increment (INC) SI so it points at next higher byte of first operand.
Increment (INC) DI so it points at next higher byte of second operand.
. Jump back to step 4 if operands contain more bytes.

N v s

If the INC instructions in steps S and 6 affected the carry flag, the next executions
of the ADC instruction in step 4 would not give the correct result.

Multiplication instructions generate double-length results and would there-
fore have to base the status flags on as many as 32-bits. Since no other instruction
bases its flag settings on more than 16 bits, the processor would need a special
flag-setting mechanism just for this one instruction. And it isn’t clear what you
would do with such flag settings anyway. To keep the processor simple, the
values of most of the status flags are left undefined after a multiplication instruc-
tion. Undefined means the processor makes no attempt to set the flags in any
particular manner (it just executes the instruction in the simplest way it can with
total disregard for flag settings). Future versions of the processor might execute
the instruction in a different manner and give different settings to the flags.

After a multiplication instruction is executed, it would be useful to know if
the product can be considered as a single-length number without being out of
range (the product considered as a double-length number is never out of range).
This would enable us to do such things as multiply a byte by another byte and add
the product to a third byte. For this reason, the overflow and carry flags are not
left undefined; they indicate if the multiplication resulted in a signed or unsigned
out-of-range result when considered as a single-length product.

For simplicity, all status flags are undefined after executing a division
instruction.

The only status flag that is important after executing a decimal addition or
subtraction adjustment is the carry flag (needed for multiple-precision arithme-
tic); all the other flags could have been left undefined. However, the 8080 has a
DAA instruction (its only decimal instruction), and that instruction sets all five
8080 status flags (the 8080 doesn’t have an overflow flag). So, for compatibility,
the 8086 DAA instruction does the same. DAS, AAA, and AAS should also
affect these five flags just to be consistent; DAS does, but implementation
difficulties caused the sign flag, zero flag, and parity flag to be undefined after an
AAA or AAS. It’s not clear what carry and auxiliary carry mean with respect to
the AAM and AAD instructions, so these were left undefined.

Since Boolean operations never produce results that are out of range, both
the overflow and carry flags are set to zero after executing such instructions. The
auxiliary carry flag has no utility following a Boolean instruction (its only pur-
pose is for decimal arithmetic), so it is left undefined. The sign, zero, and parity
flags are set to reflect the result of the instruction.

96 The 8086 Primer

One Boolean instruction, NOT, is missing from the list of Boolean instruc-
tions that affect the flags. NOT does not affect the flags. This was the result of an
oversight (I goofed!) when the processor was being defined.

Shift instructions are nothing more than multiplying or dividing by a power
of 2. The status flags reflect the status of the result with the following two
exceptions: the value of the auxiliary carry flag is undefined (we are not con-
cerned with decimal arithmetic here), and the value of the overflow flag is
undefined for variable shifts (the mechanism to detect overflow in this case was
too complex). The arithmetic right shift (SAR) can never generate a signed result
that is out of range, and therefore the overflow flag is set to O after executing such
an instruction.

The rotate instructions were designed to be compatible with the 8080 rotate
instructions and affect the flags in exactly the same way. For this reason, they
affect the carry flag and do not affect the auxiliary carry flag, sign flag, zero flag,
or parity flag. For consistency, it was decided that the rotate instructions should
affect the overflow flag in the same way that the shift instructions do, even
though it’s not clear what overflow means in this case.

The flag restoring instructions restore the flags to some previously saved
values. In particular, POPF and IRET restore all the flags (status as well as
control) to values saved on the stack. SAHF is an odd instruction (it was included
solely for compatibility with a similar instruction in the 8080) that restores the
five 8080 status flags to values contained in AH.

All interrupts clear the interrupt-enable flag and the trap flag. If the
interrupt-enable flag were not cleared, a ‘‘burst’’ of external interrupts could
cause the processor to keep pushing CS and IP on the stack at an alarming rate,
and the stack would immediately overflow. If the trap flag were not cleared, the
processor would single-step through the debugger when the debugger was at-
tempting to single-step through your program.

The behavior of the carry-flag instructions, direction-flag instructions, and
interrupt-flag instructions is straightforward. They set, clear, or complement the
one particular flag and do not affect any other flag.

4

8086
System Design

Before the advent of microprocessors, computer users were usually not
concerned about system design; they would buy a complete system from a
manufacturer. The system was often too big and expensive to be dedicated to a
single application, so it was used as a general-purpose computing system to solve
a wide variety of different problems. The small size and cost of the mi-
croprocessor makes it feasible to have a special-purpose system that is dedicated
to a particular application. For example, a cash register could actually be con-
trolled by a specially designed computer system that is built right into the cash
register box. Since each application is different, the user no longer buys a
complete system. Instead, he buys the components that make up a system and
then puts the components together in a manner that would be suitable for his
particular application. This is not unlike the hi-fi enthusiast putting together a set
of audio components in a manner that satisfies his particular needs.

This chapter will present a family of components that can be used in an
8086 system and will show how these components can be put together to form a
complete system. Very little knowledge of digital design is assumed other than a
rudimentary understanding of the basic logic elements—AND gates, OR gates,
and inverters.

Bus Structure

The 8086 is a microprocessor, not a microcomputer. The difference be-
tween the two is that a microprocessor does not contain any memory locations or
input/output ports. To put it bluntly, a microprocessor can think but it can’t
remember, hear, or speak. Thus, additional units must be added to a mi-
croprocessor to make it into a usable microcomputer. Figure 4.1 illustrates a
microcomputer system.

Information (data) is carried from one unit in a microcomputer system to
another along paths called data buses. Typically, there is only one data bus, and
it is shared by all the units in the system. The microprocessor generates control

97

98 The 8086 Primer

INPUT
PORTS

wewonr OZZ72722] menormosssson @
.

QUTPUT

PORTS

Fig. 4.1 A microcomputer system.

CONTROL SIGNALS

! i ! 4

INPY p
MEMORY MICROPROCESSOR PORTL OP%L-’%T
77 BATABUS)/ //

Fig. 4.2 A single data-bus system.

CONTROL SIGNALS

r 1 r

INPUT QUTPUT
MEMORY MICROPROCESSOR PORTS PORTS

N,

AN SIS SN o

\ \

““““

Fig. 4.3 Microcomputer system complete with address bus and data bus.

signals that permit the various units to take turns using the data bus. This is
illustrated in Fig. 4.2.

It is not sufficient to tell a unit such as memory that its turn has come to use
the data bus. The memory must be told which location within the memory is to be
involved in the information transfer. The microprocessor generates the address of
the memory location and places it on a second common bus called the address
bus. A microprocessor system with a data bus, address bus, and control signals is
shown in Fig. 4.3.

The data bus, address bus, and control signals all originate from the mi-
croprocessor itself. So let’s take a closer look at the 8086 microprocessor to see

8086 System Design 99

what sort of buses and control signals it has. Since the 8086 is a 16-bit processor,
it should have a data bus that is 16 bits wide so it can access an entire word in one
memory reference. Furthermore, since it can address up to 220 (approximately
one million) bytes, it needs an address bus that is 20 bits wide. The 8086 is
housed on a 40-pin chip, so there are only 40 connections that can be made
between the processor and the other units in the system. If 36 of those connec-
tions were used up by the address and data buses, the remaining four would
hardly be enough for all the necessary control signals and power and ground
connections. To minimize the number of connections used by the address and
data buses, these buses come out of the processor over a common set of pins, as
illustrated in Fig. 4.4. This adds a slight degree of complexity to the rest of the
system by requiring address latching (described in the next section).

8086
PROCESSOR

ADDRESS

ADDRESS/DATA BUS

DATA
BUS

(a) SYMBOLIC REPRESENTATION

8086
PROCESSOR
A9 A9 h
A8 Al
A17 Ay
A6 Atg
AD1S Ars
AD14 Ag
AD13 A3
AD12 A2
Abn A
AD10 Ao \. ApoRess
AD O ag BUS
ADSB Ag
AD7 A7
AD6 Ag
ADS Ag
AD 4 Ay
AD3 Az
AD2 Az
AD1 Ay
AD 0O T Ao)
&
J

DATA BUS
{b) ACTUAL PIN CONNECTIONS

Fig. 4.4 Shared address and data bus connections to 8086 chip.

100 The 8086 Primer

Address Latching

Let’s consider how data is sent from the processor to memory. At a certain
instant, the processor sends the address of a specific memory location out on the
address bus. At some later instant, the processor sends the data out on the data
bus. But because these two buses share some of the same pins, the processor can
no longer be sending out the address at the same time it is sending out the data.
Therefore, unless someone had the forethought to jot down the address, it will be
lost, and the data won’t know where to go.

The 8086 family includes a chip called the 8282. It is known as a latch and
can be used to remember things that would otherwise get lost. It has eight data
input pins and eight data output pins. When nudged to do so, it will memorize the
data on its input pins. Nudging is done by placing a signal on one of its control
pins, called STB (for strobe). Furthermore, placing a signal on its OE (output
enable) control pin will cause the chip to make the memorized data available on
its output pins. The chip is shown in Fig. 4.5.

Strictly speaking, the actual pin on the 8282 is labeled OE instead of OE.
This means that the function of that pin is inverted. To get an OE signal, we must
place no signal on pin OE, and vice versa. For simplicity, such details will
generally be omitted from this presentation (but not from the diagrams).

8282
LATCH

iUt m'//// 209007 oueUT

] STB
———pf OF

SIGNALS

CONTROL [

Fig. 4.5 Symbolic representation of 8282 latch chip.

Now the 8282 latch is just what we need to keep addresses from getting
lost. At the time that the processor is putting out an address on the shared
address/data bus, it is notifying everyone of this fact by putting out a control
signal on its ALE (address latch enable) pin. This ALE signal provides just the
nudging the 8282 needs in order to memorize an address. The connections
between the 8086 and the 8282 are shown in Fig. 4.6.

We used three 8282 latches in Fig. 4.6 because an address is 20 bits,
whereas a single 8282 can memorize only eight bits. In systems having limited
amounts of memory, not all 20 address bits are used, and possibly one of the
address latches could be eliminated. This is why one latch is shown dotted.

Data Amplifying

Address latching is necessary because the processor is no longer sending
out the address when it comes time to read or write the data. But there is no need
to latch the data. However, the processor is limited in how hard it can push out or
pull in the data. For example, if there are too many units on the data bus, each

8086 System Design 101

8282
LATCH
-——

1

8086
PROCESSOR

ALE

MU

BOOOLKK,

Fig. 4.6 Using a latch to separate the address from the shared address/data
bus.

trying to receive the data, the 8086 might not have enough ‘‘oomph’’ (power) to
get the data to all of them. (We would have a similar problem with addresses if
we weren 't using address latches.) The solution would be to use a data amplifier
to receive the data, amplify it, and transmit it to anybody and everybody that asks
for it. The only difficulty with such amplifying is that it must be bidirectional:
data flows from the processor to the rest of the system and also from the rest of
the system back to the processor. An amplifier that is able to transmit and receive
in either direction is called a transceiver.

The 8086 family includes the 8286 chip, which is a transceiver. It has eight
pins that serve as data input pins and another eight that serve as data output pins.
But the transceiver can interchange the roles of these two sets of pins so that the
data can pass through the chip in either direction. The chip has two control
pins—an OE (output enable) pin to tell it when to pass the data and a T (transmit)
pin to tell it in which direction the data is to be transmitted through the chip. The
chip is shown in Fig. 4.7.

The 8286 is just what we need to put more ‘‘comph’’ on the data bus. At
the time the 8086 is passing data on the shared address/data bus, it makes this
known by putting out a control signal on its DEN (data enable) pin. And the 8086
puts out a control signal on its DT/R (data transmit/receive) pin to indicate
whether the data is going from the processor to the rest of the system or vice
versa. The connections between the 8086 processor, the 8282 address latches,
and the 8286 transceivers are shown in Fig. 4.8. The transceivers are shown
dotted since they might not be necessary in small systems.

8286
TRANSCEIVER

weormmeor 2R

CONTROL OE
SIGNALS B

Fig. 4.7 Symbolic representation of 8286 transceiver.

102 The 8086 Primer

r—="
8086 l
PROCESSOR —I= |
ALE = sTB i
0.0
DT/R
=] R
I
g
| S
| \| KX TRANSCEIVER
I S 1
T F==7
R o | Iy '
| I SRR ! : Q57
|
| b —— ->1'r l
= J
b o

Fig. 4.8 Using transceivers to boost up the data bus.

Measuring Time

Timing considerations are important for nearly every function performed
by the 8086 processor. For example, let’s look a little more closely at address
latching. The 8086 processor places an address on the bus and notifies the 8282
latch of this fact by sending it an ALE signal. (What we are calling an ALE signal
is really a transition on the ALE pin from a 1 to a 0, but let’s not get bogged down
in such details.) If the processor sends out the ALE signal and the address
simultaneously, the latch might receive the ALE signal and attempt to memorize
the address before all the address bits are on the bus and in stable form. There-
fore, there must be some delay between the time the processor places the address
on the bus and the time it sends out the ALE signal. This delay is undoubtedly
short (considerably less than a millionth of a second) but nonetheless necessary to
insure that the address is stable.

The processor measures delays in clock pulses. Clock pulses are signals
received from a timing circuit called a clock generator. Just like the beats of a
metronome, clock pulses provide a frame of reference for measuring time. If
clock pulses arrive at the rate of one per second, a three clock pulse delay would
be three seconds. But if a faster clock generator were used so that one million
clock pulses arrive in a second, a three clock pulse delay would be only three
millionths of a second. Thus the faster the clock, the shorter will be all delays
until a point is reached where the delays are too short and the system will not
function properly (the ALE signal comes before the address is stable). The fastest
clock that will permit an 8086 system to still function properly is approximately
eight million clock pulses per second.

The 8284 clock generator is a chip that generates clock pulses. The rate at
which the pulses occur is determined by a quartz crystal (like the ones used in
electronic watches) that is wired to two pins of the 8284. For reliability, the 8284

8086 System Design 103

8284 8086
CLOCK GENERATOR PROCESSOR
I
CRYSTAL D CLK 4 CLK %
L— X2 -
|
bl
il s288
| s,
| r——
|
|1 h X
} : ;;:?:E:E:E:E::::;:» : (R0
I
l_ b—e——— ng M8 I
—————— e

Fig. 4.9 Connecting a clock generator to an 8086 system.

will generate one clock pulse for every three pulses from the crystal. To generate
eight million clock pulses per second, a 24 MHz (megacycles-per-second or
megahertz) crystal is used. Figure 4.9 shows how an 8284 clock generator would
be connected to an 8086 system.

Memory Units

Now that we’ve met the address bus and data bus, let’s try to hook some
memory onto the buses. There are two kinds of memories—those that never
forget and those that do. The *‘unforgettable’’ variety are initially given informa-
tion, which is burned into their memory cells. Everybody can read this informa-
tion, but the memory will not let anybody overwrite it. Hence such memories are
called read-only memories or ROMs (pronounced ‘‘roms’’) for short. The
‘‘forgettable’’ variety will allow anybody to read or overwrite its information and
hence should be called read write memories or RWMs (pronounced ‘‘rwms’’) for
short. Because of the pronunciation difficulties this presented, someone decided
to call them random access memories or RAMS for short. Don’t let this fool you;
both kinds of memory can be accessed just as randomly!

As an example of a ROM, let us consider the 2716 memory chip. The chip
contains 2!! (approximately 2,000) locations, each location containing eight bits.
Hence it is sometimes designated as a 2K X 8 ROM chip. The chip contains 11
address pins and 8 data pins. On command, the chip will fetch the contents of the
location specified by the address pins and place this information on the data pins.
The command for doing this is a pair of control signals, one on the CE (chip
enable) pin and one on the OE (output enable) pin of the 2716 chip. The chip is
shown in Fig. 4.10.

Larger memories (more locations) can be obtained by combining several
2716 chips together. For example, a memory with a 2!2 or approximately 4,000

104 The 8086 Primer

2716
2K x 8 ROM
ADDRESS N DATA
il NPT TEELL) S
gun— e
——4 GE

Fig. 4.10 Symbolic representation of 2716 2Kx8 ROM chip.

A1y

] Al

INVERTER
A1t

L.

ol NPRRORNN, NIRRT
P el

2716 ROM

Fig. 4.11 Combining two 2Kx8 memories to form a 4Kx8 memory.

A

. DATA
DETLp s

locations, each location containing eight bits, would consist of two 2716 chips.
An address is now 12 bits long. The 11 low-order bits of the address are sent to
both chips. To prevent both of them from responding with data, only one of the
chips will be enabled. The high-order bit of the address is used to determine
which chip to enable. This is shown in Fig. 4.11. Still larger memories can be
obtained by combining still more 2716 chips. In such cases, additional high-
order address bits are used to determine which chip to select. This selection
process is referred to as address decoding.

Memories can also be made wider (more bits per location) by adding more
memory chips. In this case, more than one memory chip will be enabled for each
address. For example, two 2716 chips were combined to form'a 4K X 8 memory,
whereas four such chips could have been combined to form a 4K X 16 memory.
This is shown in Fig. 4.12.

As an example of a RAM, let us consider the 2/42 memory chip. The chip
contains 2! (approximately 1,000) locations, each location containing four bits.
Hence the chip is designated as a 1K X 4 RAM. The chip contains 10 address
pins, four data pins, and several control pins. One of the control pins, CS (chip
select), selects the chip. An unselected chip will do nothing. Another control pin,
WE (write enable), causes the contents of the data pins to be placed in the
location specified by the address pins. Still another control pin, OD (output
disable), is used to determine whether or not to place the contents of the selected
location onto the data pins. WE is used when writing to the chip; OD is used
when reading from it. Figure 4.13 illustrates this chip.

Now we can put together a simple system consisting of an 8086, 4K of
16-bit ROM memory, and 4K of 16-bit RAM memory. This is shown in Fig.

105

8086 System Design

‘Kiowew 91Xy & WIoj 0] salowaw gxyg oy buluiquon iy *Bid

WOU 9LLZ

1K J 1ndnI
NUY YN ssuaav

///////%// NN
=1
nEEs i
Z

106 The 8086 Primer

2182
1K x 4 RAM

CONTROL —
sinaLs) > WE

{——CS
o0

DATA
INPUT AND OUTPUT

Fig. 4.13 Symbolic representation of 2142 1Kx4 RAM chip.

4.14. Note that two new output control signals are shown on the 8086—namely
RD (read) and WR (write). They indicate when the 8086 is about to read the
contents of the data bus and when it is writing information onto the data bus.
These signals are used to control the memories. One more control signal, BHE,
will be explained shortly.

Now let’s see what happens when the processor executes an instruction.
Consider an instruction that moves the 8-bit contents of register AL to the byte at
address 0AFO (hexadecimal). Assume AX contains F307, which means that AL
contains 07. First the processor places 0AFO on the common address/data bus.
Then the processor places a signal on its ALE (address latch enable) pin to tell the
address latch to memorize that value. The latch does just that, and now the 0AFOQ

8085
PROCESSOR
8284 —
CLOCK RD A
GENERATOR WA - B
h %y
crvstar [cLK] cLK
L_‘ X2

8286
TRANSCEIVER

Fig. 4.14 8086 system with memory.

8086 System Design 107

is on the address bus emanating from the right side of the latch. The processor
can now remove the OAF0 from the common bus and replace it with the F307.
Next, the processor places a signal on its WR (write) pin to tell the memery to
fetch the eight low-order bits of the common bus and place them into the byte
whose address is on the address bus. The memory will do just that and place 07
into the byte at address OAFO.

Now, you might ask, how did the memory know that the processor was
executing a byte move and not a word move? Specifically, how did the memory
know not to place the F3 into the byte at address 0AF1? The answer is simple:
there is one more control signal that we didn’t tell you about. That signal comes
from a pin on the processor called BHE (bus high enable). It is issued by the
processor at the same time the processor places the address on the common bus.
And, like the address, it also goes to and is memorized by the address latch. The
purpose of BHE is to tell the memory whether or not to access the eight high-
order bits on the data bus. In the preceding example, there was no signal placed
on the BHE pin.

The BHE signal is needed only when the processor writes to the memory.
When the processor is reading memory, the memory doesn’t have to know
whether the processor is executing a byte or word instruction; the memory always

T 2}
\ N ADDRESS NN\ N m
N
N
N
7 % R 77777722777, 27 722222

)
)

T

4K x 16 4K x 16

2142 RAM 2716 ROM

108 The 8086 Primer

returns a word, and the processor can decide how much of that word it wants to
use. Thus it’s unnecessary to send the BHE control signal to ROM memory as
was seen in Fig. 4.14.

There is no need for a BLE (bus low enable) signal; the complement of the
least significant address bit is used for that purpose. In other words, sending out
an odd address will inhibit the memory from accessing the eight low-order bits on
the data bus, whereas sending out an even address will not. Thus to transfer a
byte to an odd address in memory, the processor must send out the odd address
(disabling accesses to the low-order half of the data bus), send out a BHE signal
(enabling accesses to the high-order half of the data bus), and send out the
required data on the high-order half of the data bus. As we already saw in the
preceding example, the processor transfers a byte to an even address in memory
by sending out the even address (enabling accesses to the low-order half of the
data bus), sending out no BHE signal (disabling accesses to the high-order half of
the data bus), and sending out the required data on the low-order half of the data
bus. The processor can transfer an entire word to an even address in memory by
sending out the even address (enabling access to the low-order half of the data
bus), sending out a BHE signal (enabling accesses to the high-order half of the
data bus), and sending out the required data across both halves of the data bus.

And, finally, let’s consider how the processor transfers an entire word to an
odd address in memory. Two memory accesses are required to accomplish this.
The first access consists of sending out the odd address (disabling access to the
low-order half of the data bus), sending out a BHE signal (enabling access to the
high-order half of the data bus), and sending out the low-order half of the word
on the high-order half of the data bus (notice the byte juggling that just took
place). After that memory access is completed, the processor sends out an even
address obtained by adding 1 to the odd address (enabling access to the low-order
half of the data bus), sending out no BHE signal (disabling access to the high-
order half of the data bus), and sending out the high-order half of the word on the
low-order half of the data bus (more byte juggling). Figure 4.15 shows the
various ways of transferring information to memory.

WR =1

BHE =0

EVEN ADDRESS ——#mA\\ NN\ ADDRESS BUS N
y
N

BYTE BEING WRITTEN LOW ORDER HALF
tedodadedee DATA BUS
UNUSED HIGH ORDER HALF /,

@ WRITIN& TO AN EVEN-ADDRESSED BYTE @
[

MEMORY

Fig. 4.15 Writing bytes and words
to even and odd addresses.

109

8086 System Design

*("1u09) sesseippe ppo pue UBAS 0} SPIOM pue SalAq Bunum SL'y 'Bid

AHOWIW

QYOM Q3SSIHAAV-NIAI NV OL ONILIM (3}

Pl

V Y JVH H3QHO0 HOIH 3LA8 LNVDIHINSIS 1SOW
snaviva ot o poh ok ik,
AIVH HIQUO MO/ — 3LAB LNVIIAINDIS LSV

%

NN SNA SS3HAAV

N\\-4— $5380aV N3A3

L =3H8

L=HM

AHOWIW

31A8 @35S34AAY-QA0 NV OL ONILIEM (9)

%, / 41VH H3QHO HOIH NILLIYM ONIZE 3148
snd vivd fadadednals s
4174 ¥3dHo Mo —~ a3snnn

N N\ $h8 $538aaV

N\~4— $s3vaav ago

L =3Hg

L =HM

AHOWIW

QHOM Q3SS3HAAV-QTO NV OL ONLLIEM (P)

N
\

% 7Y 27VH ¥3QUG HSIH
shé wivd Yot ot it fh

4IVH Gwﬂmnw Mo

Q3ISNNN
\.‘I 3LAE LNVIIHINDIS LSOW

N

NN\ $8 $53HAAY

NN §5380QY NIA

0=3H8

L =HM

AHOWaIW

/777 21YH U3IQHO HOIH
N8 viva Yo ok o o e
41VH HIAWO MO
JvHuaguomol

R‘ll 31A8 INVIIFINDIS LSV

w\ (== Q3ISNNN
7/,///7' $18 SSIHAAY NN\ $53Haav a0
¥ T=3ng
- L-8m

110 The 8086 Primer

The least significant address bit, like the BHE signal, need not be sent to
ROM Memory.

Input/Output Ports

It’s time now to round out our system with some input and output. Once
that’s done, our system will be able to communicate with the outside world.
Input and output ports hang on the address and data bus just like memory. That
means that the processor can select a particular port by sending its address out on
the address bus and can transfer data to or from the port by using the data bus. An
output control signal (M/IO) from the 8086 can be used to distinguish memory
instructions, such as MOV, from the input/output instructions IN and OUT.
However, in small systems it’s simpler to reserve certain memory addresses for
input or output ports and then talk to these ports with memory instructions instead
of input/output instructions. This is often referred to as memory-mapped input/
ouput.

As an example, let’s consider an 8086 system that controls a pair of traffic
light units. Each traffic light unit consists of a red light, a yellow light, a green
light, and a left turn arrow. Thus there are four signals going from the 8086
system to each unit. We need an output port to control the traffic lights. An
output port is nothing more than a device for memorizing the last traffic light
settings that were sent to it and constantly feeding this information to the traffic
lights. Thus the 8282 latch seems like it would make a perfect output port. Let’s
suppose that the memory in the system uses 2!° or 1024 memory addresses. In
other words, the lowest memory address is zero and the highest is 1023. Thus we
can place the output port at memory address 1024. We could incorporate cir-
cuitry that waits for 1024 (A10 = 1, other A’s = 0) to be on the address bus and
then tells the output port to memorize what’s on the data bus. However, in this
case it’s much simpler to wait until address line A1o = 1 and ignore all the other
address lines. This has the effect of allowing the port to recognize all addresses
having A1o = 1 (approximately half a million of them); we can devote all these
addresses to one port since we have no other use for them. The system just
described is shown in Fig. 4.16.

Notice the AND gate connected to the STB (strobe) pin of the output port.
Its purpose is to send a signal to the STB pin if and only if address line Ato = 1
and the 8086 is sending out a WR signal. AND gates, OR gates, and inverters are
used to generate signals that are logical functions of other signals.

This example illustrates the use of memory-mapped output. The program
would use memory instructions to change the settings of the traffic light. For
example, an OR instruction designating memory address 1024 as the destination
operand could be used to change the settings of one of the traffic light units and
leave the other one unaltered. If we preferred to use the OUT instruction instead
(no memory-mapped output), we would need to invert the M/O output signal
(not shown) and feed it into the AND gate.

h -
= ® 5
- =
1IN @ a1vo 3
o._..u_um“u» @ Ly0d anv W
° g
.W
E
o
HOLV
o @ 5
Jlddvel @ zm>_wqu<E m.
® Pl —— — ——— A g
mv \ —ll— 1 rl —_—————— | 3
.m | | I 1 =
2
¢ o7 (I %5
m %\ \ viva _ _ — _ _ 2 z
g | Lo d] g5
@ [| <
© I © 3o
S o | =g s
® L —qyua . m
~ £ e
NN Ss3uaagy) v1VQ/SSIHAAV
— " 3H8 _ = g
=1 of—T
| a1s nv Tx J
| 10 > 3 wisawo
L kAl - tx Ill._-
828
o EL HOL1VHINID
-— ay %2012
— J vezs

H0s$300Ud
9808

The 8086 Primer

112

‘uonuepe $.10ss8%04d ayy Bumen) 21y ‘Bid

/7, snavivd

HOSS3II0Hd
9808

301A30
IVNY3LX3

HOSSIO0Yd
9808

3JOIA3Q
TVYNHIEX3

HOS$I00Hd
9808

ENOA HO4 0a |
NVD LVHM ‘MO

YANE

331A30
ITYNYILXI

¢3ONVHI ¥

139 NOA NIHM
ANVH V 3N

3AID NOA TIM

‘ EXTERNAL DEVICE 0 '—. IRO INT INTR
EXTERNAL DEVICE 1 IR1 INTA INTA

| EXTERNAL DEVICE 7 l——‘— IR

8086 System Design

8259A
INTERRUPT 8086
CONTROLLER PROCESSOR

IR2
IR3
R4
IRS
IR6

m\§

?/M BATA 777002

Fig. 4.18 8259A acting as an arbitrator.

SLAVE
8259A
INTERRUPT
CONTROLLER
EXTERNAL DEVICE 00 1RO
. IR2
L] iR3
° R4
L] IR5
. IR6
[EXTERNAL DEVICE 07 }——{ 1r7
SLAVE MASTER
8259A 8259A
INTERRUPT INTERRUPT 8086
CONTROLLER CONTROLLER PROCESSOR
I EXTERNAL DEVICE 08 '—' IRO IRO
RTINT IRT INT INTR
. IR2 IR2
[] IR3 IR3
. 1R4 IRa
° IRS RS
L 1R6 1R6
[EXTERNAL DEVICE 15 }—— IR7 IR7
*
L]
[]
[]
®
SLAVE
82597
INTERRUPT
CONTROLLER
[EXTERNAL DEVICE 56— IR0
. IR2
. IR3
. R4
. IRS
. IR6
EXTERNAL DEVICE 63 | 1r7

Fig. 4.19 Handling more than eight external devices.

113

114 The 8086 Primer

INTR
8284 A
cLocK i
GENERATOR WA
8282
1 ol
crvstar [oLk cix r |
X2 ALe T8 |
—= I
. £ HE
BHE)
ADDRESS/DATA [N
-
OTR | —
1
[-
i Lo
P r
1 11
b 3 | &
I | i
| be———— - g
b= g (AN
8
TRANSCEIVER g '5
82594 -z
INTERRUPT
CONTROLLER {0 = & n 9 © © o
€ & X ECcE T T
EXTERNAL DEVICE 0
[ExTERNAL DEVICE 1)
.
.
.
.
.
.

Fig. 4.20 8086 system with interrupt controller.

Interrupt Servicing

The 8086 processor chip has a couple of pins that can be used by external
devices to get the processor’s attention. One of these pins, INTR (normal inter-
rupts), is used by the external device to say, ‘‘Will you give me a hand when you
get a chance?’’ The other pin, NMI (non-maskable interrupt), is used to say,
“‘Give me a hand now because later will be too late!”” A more detailed descrip-
tion of these two different kinds of interrupts is found under Interrupt Instructions
in Chap. 3.

Let’s look at normal interrupts in more detail. The external device places a
signal on the INTR pin of the 8086 when it wants help. As soon as the 8086 is
able to respond (IF = 1 and processor is in between instructions), it will say to
the external device, ‘‘OK, what can I do for you?’’ The 8086 says this by putting
a signal on its INTA (interrupt acknowledge) pin. The external device then tells

oow>»

8086 System Design 115

A —
B

C

D

E

F ADDRESS

G A)

INPUT/OUTPUT

the 8086 what to do by placing a number between 0 and 255 on the data bus. This
sequence is illustrated in Fig. 4.17.

All’s fine as long as there is only one external device. But now consider
what would happen if we had two or three or even more external devices, any of
which might be asking for the processor’s attention. If two of them both wanted
help at precisely the same instant, they would both send signals simultaneously to
the INTR pin of the 8086. The 8086 would eventually respond with its INTA
signal, which both external devices would see. Then both devices would try to
place a number on the data bus, and the 8086 would receive a confused mess.

What'’s needed is some sort of arbitrator (called an interrupt controller) to
decide which external device is more important and pass its request on to the
8086. Such an arbitrator is the 82594. The external devices talk only to the
8259A and the 8259A talks to the 8086. This is shown in Fig. 4.18.

116 The 8086 Primer

8284

cLock 1088
GENERATOR PROCESSOR
INTR
X, 8288
[BUS CONTROLLER
cavstae) cLx cix CLK iNTA
'[5 §p MARDC
%3 2 2
5 § MwtC
5 s, iORC
iowe
LoCK f—a DEN
— oA
ALE
8
— LATCH
;—. MN/MX
sT8
% —
— = BHE
BHE
e
ADDRESS/DATA
-
L—tt
OE
INVERTER
A
N
6285
TRANSCEIVER

82594
INTERRUPT
CONTROLLER

Prrrtrt

Fig. 4.21 A maximum-mode 8086 system.

More than eight external devices can be handled by using more than one
8259A. Figure 4.19 shows how we can handle up to 64 different external de-
vices, each capable of interrupting the processor. One 8259A is at a higher level
than the others; it is called the master, and the others are called slaves. Now the
external devices talk only to the slaves; the slaves talk only to the master; and the
master talks to the 8086.

In order for an 8259A to perform its duties, it must know what its external
devices are. For one thing, it must know which are the more important external
devices, so it can resolve disputes. For another, it must know what reason each
device would have for generating an interrupt, so it can pass on the correct reason
to the 8086 when that device’s turn comes up. All of this information is actually
“‘programmed’’ into the 8259A by the 8086. This means that the 8259A must

>

Tmoo®

>

nTmoow

8086 System Design 117

T ADDRESS ﬂ

INPUT/OUTPUT
2142 RAM 2716 ROM PonTs

also be a fairly sophisticated device; in fact, with the exception of the 8086 itself,
the 8259A is the most complex chip described in this text. The 8086 programs
the 8259A by sending it information over the data bus; this is why the data bus is
indicated as an input (as well as an output) to the 8259A. The actual details for
programming the 8259A will not be presented here because that would require a
chapter of its own.

Figure 4.20 shows how the 8259A fits together with all the other pieces we
have seen so far.

Bigger Systems
The 8086 has one very severe limitation; it’s trying to do a lot of things, but
it only has 40 pins to do them with. In other words, the 8086 is too big for its

118 The 8086 Primer

britches. One way to solve this problem is to have the 8086 hold back and not do
everything it’s capable of, so it can fit into its pins. Another solution is to give the
8086 an additional set of pins and let it do everything it’s capable of. The 8086 is
actually schizophrenic and can b~have either way depending on the system it’s
used in. Its mode of behavior is determined by an input control pin called
MN/MX (minimum/maximum), which in a given system is either permanently
on or permanently off. When there is a signal on this pin, the 8086 holds back
and is said to be behaving in its minimum mode. No signal on MN/MX tells the
8086 that there’s another set of pins available.

The extra set of pins is actually a chip called the 8288 bus controller. It
performs some of the functions that were using up precious pins on the 8086
chip, leaving the 8086 free to perform some of its other functions over those pins.
For example, the ALE signal (address latch enable) is generated by the 8288,
thereby permitting the 8086 to use its ALE pin to perform a function that it
previously had to keep hidden. An example of a signal that the 8086 is able to
send out in maximum mode but must keep hidden in minimum mode is a LOCK
signal (discussed in Chap. 3), which permits several processors to execute at the
same time over the same buses without stepping on each other’s toes.

Figure 4.21 shows an example of a maximum mode 8086 system. The
8086 uses pins So, S1, and Sz to let the 8288 know what’s going on. Notice the
ALE, DT/R, DEN, and INTA signals that came off the 8086 in minimum mode
now come off the 8288. Furthermore, the M/IO, RD, and WR signals that came
off the 8086 have been functionally replaced with the MRDC (memory read
command), MWTC (memory write command), JORC (input/output read com-
mand), and IOWC (input/output write command). This separation of memory
read and write signals from input/output read and write signals makes it easier to
distinguish between a memory instruction and an input/output instruction. You
will recall that in Fig. 4.16 we avoided making that distinction by using
memory-mapped I/O.

The output of the 8284 clock generator is fed into the 8288. This makes it
possible for the 8288 to generate such signals as ALE or DEN at the correct
number of clock pulses after the address or data has been placed on the bus. The
So, and S1, and S: signals let the 8288 know when such things are placed on the
bus.

The data transceivers and the third address latch are usually not optional in
maximum systems and hence were not drawn dotted in Fig. 4.21.

Summary

This chapter has shown how the 8086 can be combined with other circuit
components to form a complete system. The components described here have
been designed to be used together with a minimum of interconnecting circuitry.
Additional components in the 8086 family are described in the Intel MCS-86
User’s Manual.

Once a system has been designed and built, it must be programmed. This is
the topic of the next two chapters.

5

8086
Assembly -Language
Programming

In the previous chapters we learned what an 8086 is composed of and how
an 8086 can be put together with other components to form a complete system.
But now that we have such a system, we need to be able to write a program that
such a system will execute. This chapter and the next will show how to write
such programs.

Object Code and Source Code

Let’s start by considering a very simple program. All the program does is
read in word values from input port 5, increment each value read, and write the
results to output port 2. The program is as follows:

Memory Address Memory Contents
(Hexadecimal) (Binary) Comments

00000 11100101 read word into AX . . .
00001 00000101 . . . from input port 5
00002 01000000 increment AX
00003 11100111 write word from AX. . .
00004 00000010 . . . to output port 2
00005 11101011 repeat by jumping . . .
00006 11111001 . . . back seven bytes
00007 ce

The first two columns specify the address and contents of each relevant
memory location and, as such, constitute the only form of the program compre-
hensible to the processor. This is often referred to as object code, and the
language of 1’s and 0’s in which the object code is written is called machine
language. Once we have the program in object code form, we can place it in
memory and then have the 8086 execute it.

All the information needed to write the 8086 object code of any program is
found in Chaps. 2 and 3. This information is the format of each instruction and

119

120 The 8086 Primer

source code ————p{ TRANSLATOR p————» object code

(machine language)

Fig. 5.1 The translation process.

source code ——————pd ASSEMBLER |———— object code
(assembly language) (machine language)

source code —————] COMPILER |——— object code
(high-level language) (machine language)

Fig. 5.2 Assemblers and compilers.

the encodings that go into each field of each instruction. So, in theory at least, we
could end the discussion of programming right here.

Practically speaking, writing a program in terms of 1’s and 0’s is a tedious,
repetitive, error-prone task. Ironically, these are the kinds of tasks that computers
are very good at performing. So, instead of trying to write the program in the
language of the machine, it makes more sense to write the program in a language
more familiar to us and then use a computer to translate it into the 8086’s
language. A program written in this more familiar language is called source
code, and the computer program that translates source code into object code is
called a translator. This is illustrated in Fig. 5.1.

There are two distinct kinds of languages in which we could write our
source code. These are called assembly languages and high-level languages and
are described below. The corresponding translators are called assemblers and
compilers as illustrated in Fig. 5.2.

The process of translation might involve performing some final cleanup
activities before the output is truly machine code. These cleanup activities are
part of the translation process but, unfortunately, have been given distinctive
names like relocation and linkage. Throughout this text, references to the transla-
tion process (assembling, compiling) will imply all necessary cleanup activities
as well.

A program written in assembly language is a symbolic representation of the
machine-language program. The relation between the statements in an
assembly-language program and the resulting object code is usually very obvi-
ous. A high-level language, on the other hand, is a formalized, unambiguous

8086 Assembly-Language Programming 121

dialect of some so-called natural language (typically English). The relation be-
tween statements in a high-level language and the resulting object code is often
not obvious. Assembly language gives you complete control over the resulting
object code and thereby allows you to generate very efficient object code (provid-
ing you're a very efficient programmer). A high-level language frees you from
having to think about the resulting object code and allows you to concentrate on
the task you are trying to program. You are at the mercy of the compiler as far as
generating efficient object code is concerned. But a very good compiler can
sometimes generate more efficient object code than you could have done by
writing in assembly language, especially if you're not skilled at generating effi-
cient code (it’s nothing to be ashamed of; most of us aren’t).

The remainder of this chapter describes ASM-86, an assembly language for
the 8086. Chapter 6 describes a high-level language available for the 8086—
namely PL/M-86. These two chapters are presented in a parallel fashion, using
the same organization of material as much as possible. The chapters were written
to be independent of each other so that either could be read first.

Symbolic Names

The primary advantage of using assembly language instead of machine
language is the ability to use symbolic names. Let’s illustrate this point by
rewriting the example of the previous section, this time using assembly-language
source code.

CYCLE: IN AX,5 ;read word from port 5 into AX
INC AX ;increment AX
ouT 2,AX ;write result to port 5
JMP CYCLE ;keep repeating

The above program is simpler to read and understand because it uses
symbolic names instead of numbers as much as possible. For example, the
opcodes of the four instructions are 1110010-, 01000---, 1110011-, and
11101011 in the object code, whereas they are IN, INC, OUT, and JMP in the
assembly-language source code. Such symbolic names for opcodes are called
instruction mnemonics. The symbolic opcode names introduced in Chap. 3 and
used throughout this book are, in fact, the instruction mnemonics of ASM-86.
The ASM-86 assembler can recognize these instruction mnemonics and generate
the corresponding bit patterns in the object code.

Besides the opcode fields, there are other fields in the object code. The
contents of each of these fields must somehow be specified in the assembly-
language source code so that the assembler can generate the appropriate bit
patterns in the object code. For example, the INC instruction has a 3-bit reg
field, indicating which register is to be incremented when the instruction is
executed. The contents of this reg field are specified in the source code by
indicating the symbolic name of the register, as in “‘INC AX.’’ The symbolic
register names used in ASM-86 are the names that have been used for the

122 The 8086 Primer

registers throughout this book—namely AX, BX, CX, DH, AL, BL, CL, DL,
AH, BH, CH, DH, BP, SP, SI, DI, CS, DS, ES, and SS.

Both the IN and OUT instructions have a 1-bit w field and an 8-bit port-
number field. The port numbers are specified in the source code in - very
straightforward manner by ‘“IN AX,5’" and “‘OUT 2,AX.”’ The w field is
specified in a more subtle manner by the presence of the AX in ““IN .X,5’ and
“*OUT 2,AX."’ Recall that input and output always use the accumalator and, in
particular, use AX when words are involved and AL when bytes are involved. So
the appearance of AX instead of AL in the IN and OUT instructions indicates that
the w field is a 1. (The ASM-86 convention is to place the destination before the
source; hence AX precedes port number on the IN instruction and follows it on
the OUT instruction.)

Another example of a symbolic name in the above program is the label
CYCLE on the IN instruction. This permits the JMP instruction to refer to the
location of the IN instruction by name as in “‘JUMP CYCLE.’’ The assembler
now has enough information to determine that this is a jump backwards of seven
bytes and can generate a —7 in the appropriate field of the JMP instruction.

A Complete Program

In the previous section, we wrote a fragment of an ASM-86 program. To
make that fragment into a complete program, we need to add some additional
statements:

1. IN_AND_OUT SEGMENT ;start of segment

2. ASSUME CS: IN_AND_OUT ;that’s what’s in CS
3. CYCLE: IN AX,5

4, INC AX

5. ouT 2,AX

6. JMP CYCLE

7. INL_AND__OUT ENDS ;end of segment

8. END CYCLE ;end of assembly

This entire program will reside in a single segment in the 8086 memory.
During the assembly process, we don’t know (nor do we care) where that seg-
ment will be located. That decision will be made later, before the segment is
actually loaded into memory and the code executed. During the assembly pro-
cess, we will be content to refer to the starting address of the segment by the
symbolic name IN_AND__OUT. Lines 1 and 7 delimit the extent of the seg-
ment; line 1 introduces the segment named IN._AND__OUT, and line 7 marks
the end of the segment (ENDS).

Line 8 flags the end of the source program, thereby telling the assembler
that there are no more lines to assemble. Furthermore, it indicates that when the
program is executed, it should start with the instruction labeled CYCLE (line 3).
The object code generated by the assembler, besides containing the contents of
all the relevant memory locations, also contains this starting address.

The ASSUME statement on line 2 is a bit harder to explain. I wish I could
give you a good reason for having it. Unfortunately, I can’t. Instead, I'll just

v
8086 Assembly-Language Programming 123

state the following rule: prior to or at the very beginning of any segment contain-
ing code, we must tell the assembler what it should assume will be in the CS
register when that code is executed. As far as we’re concerned, this will always
be the starting address (without the last four ‘“0’’ bits) of the segment, and so we
must include the statement:

ASSUME CS: Name__of__segment

It is beyond the scope of this book to explain (1) why the assembler needs to
know this and (2) why the assembler can’t just look at the beginning of the
segment and see the name.

Structure of ASM-86 Programs

Let’s now consider a more detailed ASM-86 program and then try to
deduce the structure of such programs in general. This program will be referred
to as the ‘‘sample program’’ throughout this chapter.

1. MY_DATA SEGMENT ;data segment
2. SUM DB ? ;reserve a byte for SUM
3. MY_DATA ENDS
4. MY_CODE SEGMENT ;code segment
5. ASSUME CS:MY_CODE, DS:MY_DATA
;contents of CS and DS
6. PORT_VAL EQU 3 ;symbolic name for port number
7. GO: MOV AX,MY_DATA ;initialize DS to MY__DATA
8. MOV Ds,AX
9. MOV SUM,0 ;clear sum
10. CYCLE: CMP SUM,100 ;if SUM exceeds 100
11. JNA NOT__DONE
12. MOV AL,SUM ;- - . then output SUM to port 3
13. ouT PORT__VAL,AL
14, HLT ;- . . and stop execution
15. NOT_DONE: IN AL,PORT_VAL ;otherwise add next input
16. ADD SUM,AL
17. JMP CYCLE ;and repeat the test
18. MY_CODE ENDS
19. END GO ;this is the end of the
assembly

Line 1 introduces a segment somewhere in the 8086 memory (we don’t
care where) and gives it the name MY__DATA. Line 3 ends the segment. The
only thing in the segment is SUM, which is defined to be a byte (DB) of data.
The question mark on line 2 indicates that the generated object code needs to
reserve a place in memory for SUM, but it need not specify any particular intitial
contents for that location. MY__DATA is apparently going to be used as a data
segment.

Line 4 introduces another segment and gives it the name MY__CODE.
This segment extends all the way to line 18. An examination of lines 7 to 17
reveals that the segment contains instructions, so we apparently intend to use it as
a code segment. Line 19 flags the end of the source program and indicates that,
when the program is executed, execution should start with the instruction labeled
GO (line 7).

124 The 8086 Primer

The ASSUME statement on line S tells the assembler what it should as-
sume will be in the CS and DS register when the segment of code is executed.
Weve already discussed the need for the assumptitn on CS. The need for making
an assumption about what’s in DS is more believable. Since some assembly-
language instructions in the code segment access data directly (in particular, the
byte SUM), the assembler must generate machine-language instructions that
address SUM using the direct addressing mode (remember the operand-
addressing modes introduced in Chap. 2?). These generated instructions must
specify (1) the offset of SUM and (2) some segment register, typically DS,
containing the starting address of the segment (namely MY__DATA) containing
SUM. The assembler needs to know which segment registers (if any) will contain
MY__DATA s starting address at the time these instructions are executed. With
this information, the assembler can determine if a segment-overriding prefix
is required on these instructions (as would be the case if, for example, MY__
DATA’s starting address were contained only in ES) and, if so, which segment
register should be specified by the prefix. Furthermore, if none of the registers
will contain MY__DATAs starting address at instruction-execution time, the
assembler knows that it cannot generate any instructions capable of accessing
SUM and will be able to report this error to us at instruction-assembly time.

So now we know why we had to assume that some segment register would
contain MY__DATA’s starting address at instruction-execution time (so that
SUM can be accessed) and why it is nice to assume that DS would be the one (so
no segment-overriding prefix is necessary). But now we need to make sure that
this assumption is satisfied. We insure this by executing certain instructions
(lines 7 and 8) prior to the first access to SUM.

Line 6 specifies that PORT__VAL is equivalent to the constant 3. This
permits PORT__VAL to be used in place of 3 on succeeding lines. The intent
here is to make PORT__VAL a symbolic name for port 3 and refer to PORT__
VAL whenever port 3 is wanted. Now if we decide to rewrite the program next
month so that it uses port 4 instead, we have to make only one change—namely
line 6 is changed to:

PORT_VAL EQU 4

The instructions on lines 7 through 17 will keep adding inputs from post 3
until the sum exceeds 100 and will then output that sum to port 3 and halt. On a
line-by-line basis, this is accomplished as follows. The instruction on line 7 puts
(the 16 most significant bits of) the starting address of segment MY__DATA into
register AX, and on line 8 this value is moved from AX to DS. This will make
SUM accessible in succeeding instructions. The instruction on line 9 initializes
SUM to 0. Observe that on lines 7, 8, and 9, the destinations-(such as SUM on
line 9) are always written before the sources (such as O on line 9). Line 10
compares (CMP) the value in SUM to 100 and sets the processor flags to indicate
the result of the comparison. Line 11 tests the flags and jumps if SUM was not
above 100 (JNA). The target of the jump is the instruction labeled NOT_DONE
(line 15). If the jump on line 11 is not taken (SUM exceeds 100), the SUM will

8086 Assembly-Language Programming 125

be moved into AL (line 12), the contents of AL will be sent to output port 3 (line
13), and the processor will halt (line 14). If the jump on line 11 is taken (SUM
does not exceed 100), the value on input port 3 will be sent to AL (line 15),
added to SUM (line 16), and the jump on line 17 will transfer control back to line
10.

Now, from the above example, let’s try to generalize about the structure of
an ASM-86 program. It consists of one or more segment blocks followed by an
END statement. Each segment block starts with a SEGMENT statement and ends
with an ENDS (end-of-segment) statement. Between the SEGMENT and ENDS
statements is a sequence of other statements. Each statement normally occupies
one line (if succeeding lines are needed, they start with ‘‘&’’). The structure of
an ASM-86 program is shown below:

NAME1 SEGMENT
statement

statement
NAME1 ENDS
NAME2 SEGMENT

statement

statement.
NAME2 ENDS

END

The programs presented here all display a consistent tabular pattern. Such
tabulation is not part of the program structure. It is purely optional as far as the
assembler is concerned but is highly recommended to make the programs easier
for us to read and understand. As an example of this point, consider the following
untabulated version of the IN_AND__OUT program. It would present no
additional difficulty to the assembler (in fact it would assemble faster) but would
be much less comprehensible to us.

IN_AND__OUT SEGMENT ;start of segment
ASSUME CS:IN_AND__OUT ;that’s what’s in CS
CYCLE:IN AX,5

INC AX

OUT 2,AX

JUMP CYCLE

IN_AND__OUT ENDS ;end of segment
END CYCLE ;end of assembly

Tokens

Before examining the kinds of statements from which ASM-86 programs
are built, we must become familiar with the building blocks of statements.
Statements are composed of such things as identifiers, reserved words, delim-

HOX
1VvIX
OHOX
1IVM
1s3t
ans
SO1S
I11S
ais
ols

HL1AGIM

3dAl

SIHL

MOVIS
HHS Zd3d dOd
THS ZNd3Y 1no
SVOS 3Nd3d HO
aas 3d34 10N
HvS d3d dON
s "oy N
dHVS 104 93N
Hod dHSNd NN
704 HSNd SAON
134 4d0d AOW

3ZiIs Xld34d HY3aN

1HOHS vdvd 3N
O3s 39Vvd aonw
did 13s340 AHOW3IW
N3700Hd ONIHLON ASYIN
ININO3S M73d
XI493S g7134
adoo3d o0dd
3odNd DHO
oinand XI493SON
Ss
ds
IS
s3
ZdOo01 dHVY1 ONP
ZNdOON zr JINF
3NdOO1 sr NP
34001 Oodr 3ONr
d001 3dr ONP
Saon dr ELN
pelen or 3aNr
S31 ZNr anNr
vai SNr 3vNr
Sa1 dNfP VNP

17
MO
HLON3I1
EN
JOVdNI
3NVYN no3
WNHAOW SAN3
3avi dan3
dNOYO WAN3
NY1X3 an3
Xa Ha
sa X0
1a SO
1a 10
dWr vr
ar 1341
ar OlNI
Jor ANI
or ONI
ar NI
ZXor NI
3ar e/}
ar 1H
3vr 0s3

HOIH
19
39

Hvd
03

dna
NOWWOD
a1A8

1v

sav

SNoBuE||9osIN ‘a

Ma
aa
ada

OHOVYW3A00

HO
xa
dg
g

INNSSY
seAalg O

Hg
XV
wv
HY

seweN Jeisibey g

Ald
03a
sva
vva

amo
SdNO
dNO
OWO

e}

aim

SOIIOWAUY UOKINASU 'Y

010
mao
TIv0

ANV

aav

oav

Swv
Avvy

avv

ywv

98-WSY U} SPIOM paAlesey |'S 8lqel

8086 Assembly-Language Programming 127

iters, constants, and comments. These building blocks are sometimes called
tokens.

Identifiers Identifiers are names that you, the programmer, are free to
make up. Examples of identifiers in the sample program are SUM, CYCLE, and
PORT_VAL. An identifier is a sequence of letters, numbers, and underscore
characters (__) but may not start with a number. An identifier may be up to 31
characters long, which means that, for all practical purposes, the length is unlim-
ited. Examples of identifiers are given below:

X
GAMMA
JACKS

THIS_NODE
THISNODE

The last two examples are indeed different identifiers.

Reserved Words Reserved words look like identifiers, but they have a
special meaning in the language, and you may not use them as identifier names.
In our sample program, we saw such reserved words as SEGMENT, MOV,
EQU, and AL. Thus it would be perfectly acceptable for us to make up a name
like EQUAL as in

EQUAL DB ?

but it would be improper for us to write
EQU DB ?

A complete list of ASM-86 reserved words is given in Table 5.1.

Delimiters Delimiters are the non-alphanumeric characters that have
special meaning in the 8086 assembly language. In our sample program, we saw
such delimiters as : and ;. In this chapter we will become exposed to many of the
delimiters. A complete list of delimiters in ASM-86 is given in Table 5.2.

Constants Constants are the fixed values appearing in ASM-86 pro-
grams. In our sample program we saw such constants as 0, 3, and 100. These are
whole-number constants. The assembly language also allows for string con-
stants.

A whole-number constant can be any non-fractional number between 0 and
65535 (that is 216 — 1). It is normally written as a decimal number but can also be
written in binary (ending with a B), octal (ending with a Q), or hexadecimal

Table 5.2 Delimiters in ASM-86

I

VAVY
+ 11 e

128 The 8086 Primer

(ending with an H). To avoid confusion with identifiers, a hexadecimal constant
must start with a numeric digit; a leading zero would suffice. Examples of
whole-number constants are 15, 1010B, 27Q, 3A0H, and OBFA3H.
A string constant is a sequence of one or two characters enclosed within
apostrophes. (Strings of more than two characters are permitted in very restricted
~cases and will not be discussed in this text.) An apostrophe itself may be included
in a string constant by writing it as two consecutive apostrophes. Examples of
string constants are 'A', 'AB', and '""!. The last example is the string' consisting
of the apostrophe character. The value of a string constant is the ASCII code of
the character(s) in the string (see Appendix C for the ASCII codes). For example,
the value of 'A! is the same as 41H (both have the value 65), and the value of
IAB! is the same as 4142H. Thus string constants and whole-number constants
can be used interchangeably.

Comments Comments are any sequence of characters following a
semicolon(;) up to the end of the line. They have no meaning to the assembler but
should be used generously in your program to keep reminding you of what you
are doing. For although comments like

INC CX ;increment CS

convey little information, comments like
INC Ccs ;prepare count for next iteration

go a long way to making a program more readable.

Expressions

One more building block, namely expressions, must be introduced before
we can build statements. Expressions are built up from some of the tokens just
described.

Loosely speaking, an expression is a sequence of operands and operators
that can be combined to produce a value at the time the program is being
assembled. So now we must introduce both operands and operators and indicate
how they are combined to produce the value of an expression.

Operands An operand is something that has a value. There are two
kinds of values that an operand might have—a numeric value and a memory
address value.

Operands that have numeric values are constants or are identifiers that
represent constants. Some numeric-valued operands appearing in our sample
program are 100 and PORT_VAL. The permissible range of values for such
operands is from —65,535 to +65,535.

Note that the value of an operand may be negative, but a constant is
never negative. A minus sign can be written in front of a constant but is never
considered as part of the constant; it is an arithmetic operator.

Memory-address operands are frequently identifiers such as SUM and
CYCLE in the sample program. The value of a memory address is not simply a

8086 Assembly-Language Programming 129

number; it is a set of components, each component generally being a number.
One component is the 16 most significant bits of the starting address of the
segment in which the memory address is contained (the four least significant bits
of a segment starting address are always zeros). Another component is the offset
of the memory address within the segment. These two components are referred to
as the segment and offset of the memory-address operand.

Another operand is an expression itself, enclosed in parentheses and used
in some bigger expression such as in 3*(PORT_VAL+5).

Operators An operator takes the value of one or more operands and
produces a new value. There are five kinds of operators in ASM-86—arithmetic
operators, logical operators, relational operators, analytic operators, and syn-
thetic operators.

Arithmetic operators are nothing more than the familiar addition operator
(+), subtraction operator (—), multiplication operator (*), and division
operator(/). Another arithmetic operator, MOD, produces the remainder that
results after doing a division. Thus 19/7 is 2, whereas 19 MOD 7 is 5.

Arithmetic operators may always be applied to a pair of numeric operands,
and the result will be a numeric value. The rules for applying arithmetic operators
on memory-addressing operands are quite a bit more restrictive. These rules can
be summarized by saying that such operations are valid only if the result has a
meaningful physical interpretation. For example, the product of two memory
addresses has no meaningful interpretation (what segment would it be in? what
offset would it have?) and hence is a prohibited operation. The difference of two
memory addresses in the same segment, on the other hand, is meaningfully
interpreted as the distance between them (difference in their offsets) and is
simply a numeric value. The only other meaningful arithmetic operation involv-
ing a memory address is adding or subtracting a numeric value to or from it. The
result is another memory address having the same segment but whose offset is the
original offset increased or decreased by the numeric value. Thus SUM+2,
CYCLE-5, and NOT__DONE-GO would all be valid expressions in our sample
program, whereas SUM-CYCLE would not (they are in different segments). It
should be emphasized that the value of SUM+2 is a memory address two bytes
beyond SUM in the MY__DATA segment; it is not the numeric value that is 2
plus the contents of location SUM (such contents would not be known until the
program is executed, whereas expressions are evaluated when the program is
assembled).

The logical operators are the usual bit-by-bit AND, OR, XOR (exlusive-
or), and NOT. The operands of logical operators must be numeric (memory-
address operands are not allowed), and the result will be numeric. For example,

1010101010101010B AND 1100110011001100B is 1000100010001000B;

1100110011001100B OR 1111000011110000B is 1100000011000000B;
NOT 1111111111111111B is 00000000000000008

and
1111000011110000B XOR SUM is invalid.

130 The 8086 Primer

As an example of logical operators, consider the following statements:

IN AL,PORT_VAL
ouTt PORT_VAL AND OFEH,AL

Execution of the IN instruction will fetch input from port PORT__VAL, wher-
ever that is. Execution of the OUT instruction will send output to port PORT__
VAL AND OFEH, which is either the same port (if PORT_VAL is even) or the
next lower-numbered port (if PORT__VAL is odd). The actual value of the port
of the OUT instruction is determined when the instruction is assembled, not
when it is executed.

Observe that AND, OR, XOR, and NOT are instruction mnemonics as
well as ASM-86 operators. As ASM-86 operators, they cause a value to be
computed when the program is being assembled. As instruction mnemonics, they
perform their roles when the program is being executed. For example,

AND DX,PORT_VAL AND OFEH

will cause the assembler to compute the value of PORT__VAL AND OFEH and
then generate an AND-immediate instruction containing that value in its data
field. When this instruction is later executed, it will cause the contents of the DX
register to be ANDed with that value and the result placed in the DX register.

The relational operators are equal (EQ), not-equal (NE), less-than (LT),
greater-than (GT), less-than-or-equal (LE), greater-than-or-equal (GE). An
example would be PORT__VAL LT 5. The two operands must both be numeric
or must both be memory addresses in the same segment. The result is always a
numeric value and will be O if the relationship is false and OFFFFH (16 bits of
1’s) if the relationship is true.

An example of using a relational operator is shown:

MOV BX,PORT_VAL LT 5

The assembler will assemble the instruction for
MOV BX,0FFFFH
if the value of PORT__VAL is less than 5; otherwise the assembler will assemble
the instruction for
MOV BX,0

At first it may appear that there isn’t much utility for relational operators
because it’s not often that you would want to generate an instruction with a field
that contains either O of OFFFFH and no other choices. However, by combining

the relational operators with the logical operators, the two relational results of 0
and OFFFFH can be molded into any numeric values you desire. For example,

MOV BX,((PORT_VAL LT 5) AND 20) OR ((PORT_VAL GE 5) AND 30)

will assemble into
MOV BX,20

8086 Assembly-Language Programming 131

if PORT__VAL is less than 5, and into
MOV BX,30

otherwise. Note the generous use of parentheses to force the order in which the
operators are applied. If you're always using parentheses to make the ordering
explicit, you’ll never have to memorize a bunch of ‘silly’’ rules about which
operators get evaluated first.

The analytic operators are used to decompose memory-address operands
into their components, and the synthetic operators are used to build memory-
address operands from their components. A discussion of these operators will be
presented after we learn more about memory-address operands.

Statements

There are two kinds of statements that can appear in an ASM-86
program—namely instruction statements (MOV, ADD, JMP, etc.) and directive
statements (DB, SEGMENT, EQU, etc.). Each instruction statement causes the
assembler to generate an instruction in the resulting object code. The directive
staements tell the assembler what kind of code to generate for succeeding instruc-
tion statements. For example, the directive statement

MY__PLACE DB ?

tells the assembler that MY_PLACE is defined to be a byte. The assembler
allocates a memory address for MY___PLACE. Later, when the assembler en-
counters the instruction statement

INC MY_PLACE

it will generate an instruction in the object code to increment the contents of
MY__PLACE. Because of the previously encountered directive statement, the
assembler will know to place a ‘0’ (to indicate a byte) in the w field of the
increment instruction.

The formats of the two kinds of statements are similar. The instruction
statements are of the form

label: mnemonic argument,...,argument ;comment

whereas the directive statements are of the form

name directive argument,...,argument ;comment

Observe that the label in an instruction statement is followed by a colon
whereas the name in a directive statement is not. This highlights the difference
between the two kinds of statements. A label associates a symbolic name with the
location of an instruction and can be used as an operand in some jump or call
instruction. The name in a directive statement has no relation to an instruction
location and can never be jumped to. Labels in instruction statements are always
optional; names in directive statements can be mandatory, optional, or prohibited
depending on the particular directive.

132 The 8086 Primer

Mnemonics in instruction statements and directives in directive statements
specify the purpose of the statement. The instruction mnemonics correspond to
the set of approximately 100 opcodes available in the 8086, and the directives
correspond to the set of some 20 functions provided by the ASM-86 assembler
(see Table 5.1). The particular mnemonic or directive may require that additional
information be provided to define its purpose completely. This information is
provided by a sequence of arguments.

Comments in statements are used to make the program more readable.
Comments are always optional, but when present, they must be preceded by a
semicolon for identification purposes.

Directive Statements

The various directive statements in ASM-86 are symbol-definition
statements, data-definition statements, segmentation-definition statements,
procedure-definition statements, and termination statements. Each of these
statements will be described in this section.

Symbol-Definition Statements The EQU statement provides a means
for defining symbolic names to represent values or other symbolic names. The
two forms of the EQU staement are illustrated:

name EQU expression
new__name EQU old__name

Some examples are as follows:

BOILING__POINT EQU 212
BUFFER__SIZE EQU 32
NEW_PORT EQU PORT__VAL+1
COUNT EQU CX

The last example differs from the other three in that COUNT does not represent a
value; it is a synonym for the CX register.

A symbolic name can be ‘‘undefined’’ by a PURGE statement so that it
may later be used to represent something entirely different.

PURGE BUFFER_SIZE

Data-Definition Statements A data-definition statement allocates
memory for a data item, associates a symbolic name with that memory address,
and optionally supplies an initial value for the data. Symbolic names associated
with data items are called variables. Examples of data-definition statements are
as follows:

THING DB ? ;defines a byte
BIGGER_THING Dw ? ;defines a word (2 bytes)
BIGGEST__THING DD ? ;defines a doubleword (4 bytes)

In the above examples, THING is a symbolic name associated with a byte in
memory, BIGGER_THING with two consecutive bytes in memory, and
BIGGEST__THING with four consecutive bytes in memory.

8086 Assembly-Language Programming 133

Before we can discuss the question marks (?), we need to introduce the
concept of initial values of data items. The object code produced by the assem-
bler contains the 1’s and 0’s that make up each instruction and the memory
address at which each instruction should reside. After the object code is pro-
duced, the instructions are loaded into memory at the indicated addresses and
then executed. At the time the instructions are loaded, initial values for data
items could also be loaded into memory. This means that the object code, besides
containing instructions and their addresses, would also contain initial values for
data items and their addresses. These initial values are specified to the assembler
in the data definition statements. The following statement will cause the assem-
bler to produce object code that, when loaded into memory, will result in a 25
being placed in the memory address allocated to THING:

THING DB 25 ;byte initially contains 25

A question mark in place of an initial value means that we do not choose to
specify an initial value for that data item; we will be satisfied with whatever
initially appears in the corresponding memory location. When the assembler sees
the question mark, it still allocates memory for the data item, but it is not
required to produce object code to initialize the memory location (although it
may very well do so0).

In general, the initial value could be specified by an expression since
expressions are evaluated at the time the program is assembled. So we can write
statements like:

IN_PORT DB PORT__VAL
OUT__PORT DB PORT_VAL+1

You will recali that expressions come in two varieties—numeric and mem-
ory address. It is certainly meaningful to initialize either a byte, a word, or a
double word with a numeric value. But what about a memory-address value? It
will never fit into a byte, so forget about that. But the offset component will fit
nicely into a word, and both the offset and segment components will fit into a
double word. So we can write initialization statements like:

LITTLE_CYCLE DW CYCLE .offset of CYCLE
BIG_CYCLE DD CYCLE ;offset and segment of CYCLE
CYCLE: MOV BX,AX

The above initialization on LITTLE_CYCLE would permit an indirect in-
trasegment jump or call to use the data item named LITTLE__CYCLE in order
to transfer control to the label named CYCLE. Similarly, an intersegment jump
or call could transfer control to CYCLE by using the data item named BIG__
CYCLE.

So far we have used data-definition statements to define a single byte (or
word or double word) at a time. We frequently have occasions to deal with tables

134 The 8086 Primer

of bytes (or words or double words). For example, the 8086 XLAT instruction
uses a table of bytes to translate an encoded value into the same value under a
different encoding. The 8086 interrupt mechanism uses a table of double words
starting at memory location O to point to the starting addresses of the interrupt
service routines. And the 8086 string instructions operate on tables of bytes or
words containing the string elements.

A table is defined by placing several initial values on a data-definition
statement. The following statement defines a table of bytes containing powers of
2:

POWERS__2 DB 1,2,4,8,16

The byte at the memory address corresponding to POWERS__2 will be ini-
tialized to 1 (when the object code is loaded into memory), and the next four
bytes will be initialized to 2, 4, 8, and 16 respectively. A table of bytes, all
initialized to zero, can be defined by

ALL_ZERO DB 0,0,0,0,0,0

or by the shorthand notation
ALL__ZERO DB 6 DUP (0)

And, finally, an uninitialized table can be defined by either of the following
equivalent statements:

DONT_CARE DB 22222227

0, 0,0, 0,0,1

DONT_CARE DB 8 DUP (?)

Types of Memory Locations ASM-86 associates a fype with every
memory location referred to in the program. The assembler, by being constantly
aware of the type of each memory location, can generate the correct code when it
encounters an instruction that accesses a memory location. For example, the
data-definition statement

SUM DB ?

informs the assembier that .3e memory location SUM is of type BYTE. Later,
when the assembler encounters an instruction statement such as

INC SuM

the assembler will know to generate a byte-increment instruction rather than a

word-increment instruction.
A memory location can e one of the following types:

1. BYTE of data, as in:
SUM DB ? ;defining a byte

2. WORD of data (two consecutive bytes), as in:
BIGGER_SUM Dw ? ;defining a word

8086 Assembly-Language Programming 135

3. DWORD of data (four consecutive bytes), as in:
BIGGEST__SUM DD ? ;defining a doubleword

4. NEAR instruction location, as in:
CYCLE: CMP SUM,100

5. FAR instruction location:
(means of defining such locations will be discussed shortly)

An instruction location can appear in a jump or call instruction statement.
The assembler will generate an intrasegment jump or call if the type of the
location is NEAR and an intersegment jump or call if it is FAR. For example, the
labeled instruction statement

CYCLE: CMP SUM,100

informs the assembler that the memory location CYCLE is of type NEAR. (We
will see shortly how the synthetic operators PTR and THIS can be used to define
a memory location of type FAR.) Later, when the assembler encounters an
instruction such as

JMP CYCLE

the assembler will know to generate an intrasegment jump instruction rather than
an intersegment jump instruction.

A memory address built by adding or subtracting a numeric value to or
from some other memory address has the same type as the original memory
address. For example, SUM+2 is another BYTE, BIGGER _SUM-3 a
WORD, and CYCLE+1 a NEAR instruction location.

Analytic and Synthetic Operators We now know enough about mem-
ory addresses to finish up the discussion of operators. The analytic operators are
used to decompose memory-address operands into their components. These
operators are SEG, OFFSET, TYPE, SIZE, and LENGTH.

The SEG operator returns the segment component of the memory-address
operand, and the OFFSET operator returns the offset component. Both of these
components are generally numeric values.

The TYPE operator returns a numeric value, which is the type component
of the memory-address operand. The value of the type component for the various
memory-address operands is as follows:

Memory-Address Operand Type Component

BYTE of data 1
WORD of data 2
DWORD of data 4
NEAR instruction location -1

FAR instruction location -2

136 The 8086 Primer

Notice that the type component for bytes, words, and double words corresponds
to the number of bytes that each occupies. The value of the type component for
instruction locations does not have a physical interpretation.

The LENGTH and SIZE operators are applicable only with data-memory-
address operands (BYTE, WORD, or DWORD). The LENGTH operator returns
a numeric value, which is the number of units (bytes, words, or double words)
associated with the memory-address operand. The SIZE operator returns a
numeric value, which is the total number of bytes allocated for the memory-
address operand. For example, if MULTL_WORDS is defined by

MULTI_WORDS Dw 50 DUP (0)

then LENGTH MULTI_WORDS is 50 and SIZE MULTL_WORDS is 100.
Notice that SIZE X is equal to (LENGTH X) * (TYPE X).

The synthetic operators are used to build memory-address operands from
their components. These operators are PTR and THIS.

The PTR operator builds a memory-address operand that has the same
segment and offset of some other memory-address operand but has a different
type. Unlike a data-definition statement, the PTR operator does not allocate any
memory; it merely gives another meaning to previously allocated memory. For
example, if TWO_BYTE were defined by,

TWO_BYTE bDw ?

then we could give a name to the first byte in the word as follows:
ONE__BYTE EQU BYTE PTR TWO__BYTE

In this example, the PTR operator has created a new memory-address operand
having the same segment and offset components as TWO__BYTE but having a
type component of BYTE. We can name the second byte of TWO__BYTE either
as

OTHER_BYTE EQU BYTE PTR (TWO_BYTE+1)

or more simply as
OTHER_BYTE EQU ONE_BYTE+1

The PTR operator can also be used to create words and double words as
illustrated below:

MANY__BYTES DB 100 DUP (?) ;an array of 100 bytes
FIRST_WORD EQU WORD PTR MANY_BYTES
SECOND__DOUBLE EQU DWORD PTR (MANY__BYTES+4)

And, furthermore, the PTR operator can be used to create locations of instruc-
tions as illustrated below:

INCHES: CMP SUM,100 ;type of INCHES is NEAR

8086 Assembly-Language Programming 137

JMP INCHES ;intrasegment jump
MILES EQU FAR PTR INCHES ;type of MILES is FAR
JMP MILES ;intersegment jump

Notice that the above examples illustrate ways to build new memory-
address operands from old ones by (1) using the PTR operator as in BYTE PTR
TWO__BYTE, (2) using expressions as in ONE_BYTE+1, and (3) using a
combination of PTR and expressions as in BYTE PTR (TWO_BYTE+1).
Expressions are useful when we wish to change the offset component but leave
the type component unchanged. The PTR operator is useful when we wish to
change the type component but leave the offset component unchanged. Neither
expressions nor PTR changes the segment component. And the new memory-
address operand, created by either expressions or PTR, will have a length com-
ponent of 1 (providing it’s not an instruction location).

The synthetic operator THIS, like PTR, builds a memory-address operand
of a specified type without allocating any memory for it. The segment and offset
component of the new memory-address operand is the segment and offset of the
next memory location available for allocation. For example,

MY__BYTE EQU THIS BYTE
MY_WORD DW ?

would create MY__BYTE with type component of BYTE and with the same
segment and offset components as MY__WORD. In this example, MY__BYTE
could have been built with the PTR operator instead as follows:

MY_BYTE EQU BYTE PTR MY_WORD

The THIS operator is very convenient for defining FAR instruction loca-
tions as in the following:

MILES EQU THIS FAR
CMP SUM, 100
JMP MILES

Note that the use of the THIS operator in the above example made it un-
necesssary to have a NEAR instruction location with the same segment and offset
as MILES. If we were to use the PTR operator instead of the THIS operator, such
a NEAR instruction would have been necessary.

138 The 8086 Primer

Segmentation-Definition Statements The segmentation-definition
statements allow us to organize our program so that it uses the 8086 memory
segments. These directives are SEGMENT, ENDS, ASSUME, and ORG.

The SEGMENT and ENDS statements subdivide the assembly-language
source program into segments. Such segments correspond to the memory seg-
ments into which the resulting object code will eventually be loaded. The assem-
bler is concerned with program segmentation for the following reasons:

1. Intrasegment jump and call instructions contain only the offset (16 bits)
of the new location. Intersegment jump and call instructions must con-
tain the segment (another 16 bits) in addition to the offset.

2. Data-accessing instructions that use the current data segment and cur-
rent stack segment in the manner most optimal for the 8086 architecture
contain only the offset (16 bits) of the data location. Any other instruc-
tion that accesses a data location within one of the four currently-
addressable segments must contain a segment-overriding prefix
(another eight bits) in addition to the offset. (‘‘Current’’ refers to when
the instruction is executed, not assembled.)

Therefore, in order to assemble the correct object code, the assembler must be

aware not only of the segment structure of the program but also of which seg-

ments will be addressable (pointed at by segment registers) when various instruc-

tions are executed. This information is supplied by the ASSUME directive.
The following example shows how the SEGMENT, ENDS, and ASSUME

directives can be used to define a code, data, extra, and stack segment:

MY_DATA SEGMENT

X DB ?

Y Dw

z DD ?
MY__DATA ENDS

-~

MY_EXTRA SEGMENT

ALPHA DB ?
BETA Dw ?
GAMMA DD ?
MY_EXTRA ENDS
MY_STACK SEGMENT
DW 100 DUP (?) ;this is the stack
TOP EQU THIS WORD

MY__STACK ENDS

MY_CODE SEGMENT
ASSUME CS:MY_CODE,DX:MY__DATA
ASSUME ES:MY_EXTRA,SS:MY__STACK

START: MOV AX, MY_DATA ;initializes DX
MOV DS,AX
MOV AX,MY_EXTRA ;initializes ES

MOV ES,AX

8086 Assembly-Language Programming 139

MOV AX,MY__STACK ;initializes SS
MOV SS,AX

MOV SP,OFFSET TOP ;initializes SP

MY_CODE ENDS
END START

Observe that the code at the head of the MY__CODE segment will, at the
time the program is executed, initialize the various segment registers to point to
the appropriate segments (and will initialize the stack pointer to point to the end
of the stack segment). The ASSUME statement makes the assembler aware of the
values that will be in segment registers at the time the code is executed.

To illustrate the purpose of the ASSUME statement, let’s consider code
(within SEGMENT MY__CODE) that moves the contents of byte X to byte
ALPHA. To do this, we need an instruction that moves the contents of X into a
register, say BX, and an instruction that moves the contents of the register into
ALPHA. How about:

MOV BX,X ;from X to BX
MOV ALPHA,BX sfrom BX to ALPHA.

During the execution of such MOV instructions, the 8086 processor would
normally look in the DS register to find the starting address of the segment in
which the specified item (X or ALPHA) is located. This will work fine when
accessing X (the first instruction) because DS will indeed contain the starting
address of segment MY__DATA in which X is located. But this will not work
when accessing ALPHA (the second instruction) because the starting address of
segment MY__EXTRA in which ALPHA is located will not be contained in DS.
The ASSUME statement has made the assembler aware that the first instruction
will execute properly. The assembler is also aware (thanks to the ASSUME
statement) that the starting address of MY__EXTRA, although not in DS, will be
in one of the other segment registers—namely ES. The assembler, therefore,
generates a segment-overriding prefix for the second instruction so that it too will
execute properly.

It’s not always possible for us to know what will be in the segment registers
when a particular instruction will be executed. Consider the following example:

OLD_DATA SEGMENT
OLD_BYTE DB
OLD__DATA ENDS

NEW__DATA SEGMENT
NEW__BYTE DB ?
NEW_DATA ENDS

140 The 8086 Primer

MORE__CODE SEGMENT
ASSUME CS:MORE__CODE

MOV AX,OLD_DATA ;put OLD__DATA into
MOV DS,AX ;. . .DS and
MOV ES,AX ;. . .ES

ASSUME DS:OLD_DATA,ES:OLD_DATA

CYCLE: INC OLD_BYTE .what’s in DS now?
MOV AX,NEW__DATA ;put NEW__DATA
MOV DS,AX ;. . .into DS

JMP CYCLE

MORE_CODE ENDS

The first time the INC instruction is executed, DS will contain OLD__DATA and
the indicated assumption on DS will be correct. But then DS will become
changed to NEW__DATA, and the same INC instruction will be executed a
second time. Therefore, it would be wrong for the assembler to make any
assumptions about the contents of DS when the INC instruction is executed; the
assembler must generate a segment-override prefix (specifying the extra seg-
ment) on the INC instruction even though this prefix would be unnecessary on
the first execution of INC. In order to tell the assembler not to make any
assumptions about DS, we must place the following assumption just before the
INC instruction:

ASSUME DS:NOTHING
CYCLE: INC OLD_BYTE

Prior to or at the very beginning of any segment containing code, we must
tell the assembler (via an ASSUME statement) what it should assume will be in
the CS register when that segment of code is executed. It is beyond the scope of
this book to explain why ASM-86 requires this.

It is not absolutely essential to use an ASSUME statement to tell the
assembler what will be in DS, ES, and SS. Instead, we could tell the assembler
which segment register should be used for the execution of each instruction. For
example, the move of X to ALPHA in the previous example could be written as:

MOV BX, DS:X
MOV ES:ALPHA,BX

8086 Assembly-Language Programming 141

This says that DS should be used when X is accessed, and ES should be used
when ALPHA is accessed. Since the processor would normally use DS when
executing these instructions, the assembler produces a segment-overriding prefix
when generating object code for the second instruction but not for the first
instruction.

Now let’s look at one of the shortcomings of memory segments and see
how we can get around it. Memory segments always start on 16-byte boundaries
(remember that the last four bits of segment starting addresses are zero). A
segment can be up to 2!6 bytes long. If a segment doesn’t use all of its approxi-
mately 65,000 bytes, some other segment can start just beyond the last byte used
by the first segment. But the second segment must also start on a 16-byte
boundary and, therefore, may not be able to start immediately after the last byte
used by the first segment. This means there could be up to 15 bytes wasted
between segments.

As an example, suppose the first segment starts at address 1000 (hexadec-
imal) and uses only 6D (hexadecimal) bytes. So the last byte used is at address
1006C. The earliest the second segment could start would be at address 10070,
thereby wasting the bytes at 1006D, 1006E, and 1006F.

Now, instead of starting the second segment at the lowest 16-byte bound-
ary beyond the last byte used by the first segment, we could start the second
segment at the highest 16-byte boundary that does not cause any bytes to be
wasted. So, in the previous example, we could start the second segment at
address 10060. This will result in the last few bytes (13 to be exact) used by the
first segment to be also in the second segment. But the second segment would
then simply not use its first few bytes, and everybody would be happy. So, if the
second segment starts at 10060, the bytes in the second segment below offset
000D would simply not be used by the second segment. Therefore, no bytes are
wasted.

We usually don’t care where in memory our segments are located, so we let
the translator make that choice for us. However, we might want to give the
translator some constraints such as ‘‘don’t overlap this segment with any other
segment,’’ ‘‘make sure the first byte used by this segment is at an even address
(so that word accesses can be done in a single memory reference),’’ or *‘start this
segment at the following address.’” We can write these constraints-into the source
program as follows:

1. Don’t overlap. First usable byte in segment is on a 16-byte boundary
and has an offset of 0000.

MY_SEG SEGMENT ;this is the normal case

MY__SEG ENDS

142 The 8086 Primer

2. Overlap if you must, but first usable byte must be on a word boundary.
MY__SEG SEGMENT WORD ;word aligned

MY__SEG ENDS

3. Overlap if you must, and place first usable byte anywhere you like.
MY__SEG SEGMENT BYTE ;byte aligned

MY__SEG ENDS

4. Start segment at specified 16-byte boundary. First usable byte is at
specified offset

MY__SEG SEGMENT AT 1A2BH ;address 1A2B0
ORG 0003H ;address 1A2B3

MY__SEG ENDS

The last example introduced another statement, namely ORG (for origin). It
specifies the next offset to be used in the segment.

Procedure-Definition Statements Procedures are sections of code that
are called into execution from various places in the program. Each time a proce-
dure is called upon, the instructions that make up the procedure are executed, and
then control is returned back to the place from which the procedure was origi-
nally called.

The 8086 instructions for calling to and returning from a procedure are
CALL and RET. You will recall that these instructions come in two flavors—
intrasegment and intersegment. The intersegment ones push (CALL) and pop
(RET) both the segment and the offset of the place to which the procedure should
return. The intrasegment ones push and pop only the offset.

Procedures that are called with intrasegment CALLs must return with
intrasegment RETurns. Such procedures are known as NEAR procedures. Simi-
larly, procedures that are called with intersegment CALLs must return with
intersegment RETurns and are known as FAR procedures.

The procedure-definition statements, PROC and ENDP (end procedure),
delimit a procedure and indicate whether it is a NEAR or FAR procedure. This
helps the assembler in two ways:

1. When assembling CALL instructions to that procedure, the assembler
will know which kind of CALL to assemble.

8086 Assembly-Language Programming 143

2. When assembling RET instructions within that procedure, the assem-
bler will know which kind of RET to assemble.

The following example illustrates this:

MY__CODE SEGMENT

UP_COUNT PROC NEAR
ADD CX,1
RET

UP_COUNT ENDP

START: .
CALL UPCOUNT
CALL UPCOUNT
HLT

MY_CODE ENDS
END START

Since UP_COUNT is declared to be a NEAR procedure, all CALLSs to it are
assembled as intrasegment CALLs, and all RETurns within it are assembled as
intrasegment returns.

The above example points out some similarities between the RET instruc-
tions and the HLT instruction. There may be more than one RET in a procedure
just as there may be more than one HLT in a program. The last instruction in a
procedure (program) need not be a RET (HLT); but, if it is not, that instruction
should be a jump back to somewhere within the procedure (program). The END
(ENDP) tells the assembler where the procedure (program) ends but does not
cause the assembler to generate a RET (HLT) instruction.

Termination Statements With one exception, each terminating state-
ment is paired up with some beginning statement. For example, SEGMENT and
ENDS, PROC and ENDP. These terminating statements are described together
with their corresponding beginning statements.

The one exception is END, which flags the end of the source program. It
tells the assembler that there are no more instructions to assemble. The form of
the END statement is

END expression
where the expression must yield a memory-address value. That address is the

address of the first instruction to be executed when the program is executed.
The following example illustrates the use of the END statement:

144 The 8086 Primer

START:

END START

Instruction Statements

The instruction statements, for the most part, correspond to the instructions
of the 8086 processor. Each instruction statement causes the assembler to gener-
ate one 8086 instruction. An 8086 instruction consists of an opcode field as well
as fields specifying the operand-addressing mode (mod field, r/m field, reg
field). So the instruction statements in ASM-86 must contain an instruction
mnemonic as well as sufficient addressing information to permit the assembler to
generate the instruction.

Instruction Mnemonics Most of the instruction mnemonics are pre-
cisely those symbolic opcode names introduced in Chap. 3 for the 8086 instruc-
tions. Some additional instruction mnemonics, NIL and NOP, were added to
make the assembly language more versatile.

The instruction mnemonic NOP (no-operation) causes the assembler to
generate the 1-byte instruction that exchanges the contents of the AX register
with the contents of the AX register (hexadecimal opcode 90). Not only doesn 't
this instruction do anything, it doesn’t waste any time not doing it since it doesn’t
make any memory accesses. Although it seems strange to waste precious mem-
ory locations on instructions that do nothing, sometimes there are good reasons
for wanting to do this. The NOPs might serve as placeholders for instructions that
will be filled in later, possibly when the program is executing (a popular trick in
earlier years). They might also be used to slow down a portion of the program
where precise timing relationships are important.

NIL is the only instruction mnemonic that does not cause the assembler to
generate any instructions. In contrast to NOP, which causes the assembler to
generate an instruction that does nothing when executed, NIL doesn’t.even cause
an instruction to be generated. The NIL instruction statement serves as a conve-
nient placeholder for labels in the assembly-language program. This is illustrated
by the following instruction statements:

CYCLE: NiL
INC AX

Although this is equivalent to
CYCLE: INC AX

the NIL makes it much easier to insert instructions ahead of the INC instruction
in the source program if the need arises later.

8086 Assembly-Language Programming 145

Instruction Prefixes The 8086 instruction set permits instructions to
start off with one or more prefix bytes. There are three possible prefixes—
segment-override, repeat, and lock.

ASM-86 permits the following prefixes to be included along with the
instruction mnemonic:

LOCK

REP (repeat

REPE (repeat while equal)
REPNE (repeat while not equal)
REPZ (repeat while zero)
REPNZ (repeat while non-zero)

An example of an instruction statement using a prefix is given:
CYCLE: LOCK DEC COUNT

The segment-overriding prefix is generated automatically by the assembler
whenever the assembler realizes that a memory access requires such a prefix. The
assembler makes this decision in two steps. First, it selects a segment register
that will make the instruction execute properly. The assembler selects the seg-
ment register based on the information it received from previous ASSUME
statements. However, we could force the assembler to select a particular segment
register by including that register in the instruction as in:

MOV BX,ES:SUM

Second, the assembler determines, from its knowledge of the 8086 processor, if a
segment-overriding prefix is necessary to force the execution of the instruction to
use the selected segment register.

Operand-Addressing Modes The 8086 processor provides various
operand-addressing modes. ASM-86 must therefore provide a means of express-
ing each such mode when writing instruction statements. These will be illustrated
by examples:

1. Immediate:

MOV AX,15 ;15 is an immediate operand
2. Register:

MOV AX,15 AX is a register operand
3. Direct:

SuMm DB ?

MOV SUM,15 ;SUM is a direct memory operand

146 The 8086 Primer

4. Indirect through base register:

MOV AX,[BX]
MOV AX,[BP]

5. Indirect through index register:

MoV AX,[S]]
MOV AX,[Dl}
6. Indirect through base register plus index register:
MOV AX,[BX] [SI]
MOV AX,[BX] [DI]
MOV AX,[BP] (S]]
MOV AX,[BP] [DI]
7. Indirect through base or index register plus offset:
MANY__BYTES DB 100 DUP (?)
MOV AX,MANY__BYTES[BX]
MoV AX,MANY__BYTES[BP]
MOV AX,MANY__BYTES[SI]
MOV AX,MANY__BYTESIDI]

8. Indirect through base register plus index register plus offset:

MANY__BYTES DB 100 DUP (?)
MOV AX,MANY__BYTES[BX][SI]
MOV AX.MANY__BYTES[BX][DI]
MOV AXMANY__BYTES[BPj[SI]
MOV AX.MANY_BYTES[BP][DI]

You will recall that the assembler uses its knowledge about a memory
location’s type when generating instructions that reference that memory location.
For example, the assembler would generate a byte-increment when encountering
the following:

SUM DB ? ;type is BYTE

INC SUM ; a byte increment

However, with indirect operand-addressing modes, it is not always possible for
the assembler to know the type of the memory location, as illustrated by:

MOV AL,[BX]

Even though the assembler does not know the type of the source operand in the
above instruction, it does know that the type of the destination operand, AL, is

8086 Assembly-Language Programming 147

BYTE. So the assembler assumes that [BX] is also of type BYTE and generates a
byte-move instruction. But now consider the statement:

INC [BX]

There is no second memory location here to help the assembler determine the
type of [BX]. So the assembler cannot decide whether to generate a byte-
increment instruction or a word-increment instruction. The above statement must
therefore be written as either

INC BYTE PTR [BX] ;a byte-increment
or
INC WORD PTR [BX] ;a word-increment

so that the assembler can determine the type.

String Instructions The assembler can usually determine the type of an
operand (and hence know what kind of code to generate for accessing that
operand) from its declaration. However, we have just seen that when using an
indirect-addressing mode we might have to supply the assembler with additional
information so it can determine the type.

String instructions are another example of when such additional informa-
tion is necessary. Consider the string instruction MOVS. This instruction moves
the contents of the memory address whose offset is in SI into the memory address
whose offset is in DI. We should not need to specify any operands since the
instruction has no choice as to which items to move and where. However, the
instruction could move either a byte or a word; the assembler must know which is
being moved so it can generate the correct instruction. For this reason, the
ASM-86 statement for the MOVS instruction must specify the items that have
been moved into SI and DI.

For example, consider the following:

ALPHA DB 2

BETA DB 2
MOV SI,OFFSET ALPHA
MOV DI, OFFSET BETA

MOVS BETA,ALPHA

The presence of BETA and ALPHA on the MOVS statement informs the assem-
bler to generate a MOVS instruction that moves bytes (because the TYPE com-
ponents of both BETA and ALPHA are BYTE). Furthermore, from the SEG
components of BETA and ALPHA, the assembler is able to determine if the
operands of the MOVS instruction are in accessible segments. The OFFSET
components of ALPHA and BETA are ignored.

148 The 8086 Primer

Like MOVS, the other four string primitives contain operands; MOVS and
CMPS have two operands while SCAS, LODS, and STOS have one. For exam-
ple:

CMPS BETA,ALPHA
SCAS ALPHA
LODS ALPHA
STOS BETA

XLAT also requires an operand—namely the item that was moved into BX
to serve as the translation table. The SEG component of this operand enables the
assembler to determine if the translation table is in a currently accessible seg-
ment; the OFFSET component is ignored. An example of an XLAT statement is
as follows:

MOV BX,OFFSET TABLE
XLAT TABLE
Examples

The following examples illustrate some of the details of ASM-86:

1. Translate the values from input port 1 into a Gray code and send the
result to output port 1.

MY_DATA SEGMENT

GRAY DB 18H,34H,05H,06H,09H,0AH,0CH,11H,12H,14H
MY_DATA ENDS

MY_CODE SEGMENT
ASSUME CS:MY__CODE, DS:MY__DATA

GO: MOV AX,MY_DATA ;establish data segment
MOV DS,AX
MOV BX,OFFSET GRAY ;translation table into BX
CYCLE: IN AL,1 ;read in next value
XLAT GRAY ;translate it
ouT 1,AL soutput it
JMP CYCLE ;and repeat
MY_CODE ENDS
END GO

2. Add two unpacked BCD (ASCII) strings together.

MY_DATA SEGMENT

STRING_1 DB 14,171,154, 12! ;value is 2571
STRING_2 DB '3.,'8','1','4! ;value is 4183
MY_DATA ENDS

MY_CODE SEGMENT
ASSUME CS:MY_CODE, DS:MY_DATA

GO: MOV AX,MY_DATA ;establish data segment
MoV DS,AX
CLC ;no carry initially
CLD ;forward strings
MOV SI,OFFSET STRING_1 ;establish string pointers
MOV DI,OFFSET STRING__2

CYCLE: LODS STRING__1 ;get STRING__1 element

8086 Assembly-Language Programming 149

ADC AL,[DI] ;add STRING__2 element

AAA ;correct for ASCII

STOS STRING__2 ;result into STRING__2

JCXZ CYCLE ;repeat for extra string

HLT ;correct for ASCII
MY__CODE ENDS

END GO

3. Decimal multiplication algorithm of Fig. 3.32

MY__DATA SEGMENT

A DB 131171 151 141 19!
B DB '6!
C DB LENGTH (A) DUP (?)

MY__DATA ENDS
MY__CODE SEGMENT

ASSUME CS:MY_CODE,DS:MY_DATA

GO: MOV AX,MY__DATA ;establish data segment
MOV DS,AX
CLD sforward strings
MOV SI,OFFSET A ;establish pointers
MOV DI,OFFSET C
MOV CX,LENGTH A ;establish count
AND B,0FH ;clear upper half of b
MOV BYTE PTR [SI].0 sclear crl]

CYCLE: LODS A ;get ali]
AND AL,OFH ;clear its high-order bits
MUL ALB ;multiply by b
AAM ;correct for ASCII
ADD D] ;add to cfi]
AAA ;adjust for ASCII
STOS C ;store in cfi
MOV [DI],AH and cfi+1]
JCXZ CYCLE :repeat for entire string
HLT

MY__CODE ENDS
END GO

4. Move 50 bytes between two overlapping strings.

MY__DATA SEGMENT

STRING DB 1000 DUP (?)
STRING__1 EQU STRING+7
STRING_2 EQU STRING+25

MY__DATA ENDS
MY__CODE SEGMENT

ASSUME CS:MY__CODE, DS:MY__DATA
STRING_SIZE EQU 50 ;number of bytes to move
GO: MoV AX,MY_DATA ;establish data segment

MOV DS,AX

MOV CX,STRING__SIZE

MOV SI,OFFSET STRING_-1 ;source string

MOV DI, OFFSET STRING_2 ;destination string

CLD ;assume a forward move

CMP S1,DI ;if source string comes first

150 The 8086 Primer

JLT oK
STD ;...we need backwards move
ADD SIL,STRING__SIZE—1 ;set SI and DI to
ADD DI, STRING__SIZE-1 ;...end of strings
OK: REPEAT MOVS STRING__2,STRING_1 ;move the string
HLT
MY__CODE ENDS
END GO

In Conclusion

This chapter was not meant to be a compendium of all the features and
rules of ASM-86 (the Intel MCS-86 Assembly Language Reference Manual does
that very well). Instead, it attempted to present most of the features of the
language in a form that was easy to digest and to convey enough information to
enable you to write meaningful programs. What was not covered were many of
the more advanced features, so that attention could be focused on the underlying
concepts of the language.

6

8086
High-Level-Language
Programming

Who Needs High-Level Languages?

Writing programs for the 8086 can be done in a laborious way by figuring
out the binary encodings for each instruction, in an endurable way by thinking
about the instructions conceptually and using an assembler to generate the bi-
nary, or in an effortless way by thinking about the problem we want to solve and
using a compiler to transform our high level solution into instructions and even-
tually into binary. This is not to imply that there aren’t assembly-language
programmers who don’t enjoy what they 're doing; certainly there must be a lot of
pleasure in reducing a 1025-byte program to fit into 1024 bytes. Such pro-
grammers are in big demand when programs dont fit into the amount of memory
that’s been allocated for them. But there are often times when writing and
debugging large programs as quickly as possible is more important than doing it
in as few bytes as possible. It’s at those times that high-level languages and
compilers prove indispensable.

Other adjectives often used by the advocates of high-level language pro-
grams are the following:

1. High reliability—good chance the program will do what’s expected of
it.

2. Ease of maintainability—future changes can be made with little diffi-
culty.

3. Self-documenting—easy to read and understand.

To illustrate these points, let’s write a program that finds the smallest
number divisible by three that is greater than 100. The answer, of course, is 102;
but let’s see how the 8086 can be used to figure it out.

One way to solve the problem would be to start with zero and keep adding
three until the result exceeds 100. More specifically, start with a byte X being
zero and, while X is less than or equal to 100, add three to X.

151

152 The 8086 Primer

A high-level programming language would let you write down the program
directly from the verbal description of the solution. In the programming language
called PL/M-86, this would look like:

DECLARE X BYTE;

X=0;

DO WHILE X > = 100;
X = X+3;

END;

Notice that the above program could be written without giving any thought to the
instruction set of the 8086. The program would be fed into a compiler, which
generates the 8086 instructions for us.

Now let’s try to write an assembly-language program to find the result. We
need to convert the description of the solution into a sequence of steps corre-
sponding to 8086 instructions.

Reserve a byte in memory for X.

Move a zero into that byte.

Compare the value in X to 100.

If the comparison indicates X exceeds 100, jump to the end of the
program.

Add three to X.

6. Jump back to step 3.

7. This is the end of the program, so halt.

F ORIV S T

[&]

From these steps, we can write the program in ASM-86, an assembly language
for the 8086.

1. X DB ?

2. MOV X,0

3. CYCLE: CMP X,100
4. J.. DONE
5. ADD X3

6. JMP CYCLE
7. DONE: HLT

The fourth step was left incomplete because we 're not too sure what it should be.
We want to jump if X exceeds 100, and we just compared X to 100. Since
comparing means subtracting 100 from X, that means that if X exceeds 100 we
get a number greater than zero after doing the subtraction. It looks like we want
to do a JG (jump on greater) instruction. Or, on the other hand, is X subtracted
from 100 so we get a number less than zero if X exceeds 100? Maybe we want a
JL (jump on less) instruction? Well, at least there’s a 50-50 chance of getting it
right. Notice that we didn’t have to worry about doing it wrong in the high-level
language program. (Actually, the best instruction for step 4 is JA.)

In all fairness to assembly-language programming, let’s see what can be
done to shorten our program. For one thing, the first time step 4 is executed, the
jump will not be taken. So let’s move steps 3 and 4 to the end of the loop and
remove step 6, thereby saving one instruction.

8086 High-Level-Language Programming 153

1. . X DB ?

2. MOV X,0

3. REPEAT: ADD X3

4. CMP X,100

5. JNA REPEAT
6.

7. HLT

Another thing we could do is use the AL register instead of the memory byte X.
This would shorten the instructions in steps 2, 3, and 4 by one byte each and also
free up the byte dedicated to X.

1.

2. MOV AL,0

3. REPEAT: ADD AL3

4. CMP AL,100
5. JNA REPEAT
6.

7. HLT

Now suppose we don’t awn either a compiler or an assembler. Then we
must write all the instructions in binary. As an example, let’s consider the
instruction in step 6. The JNA CYCLE instruction is a 2-byte instruction with the
first byte containing 0111 0110. The second byte has to tell the number of bytes
to jump over to get to CYCLE. This means we must know how long each
instruction is and then count the number of bytes between the instruction in step 3
and the instruction in step 6. This is left as an exercise for those readers who
enjoy binary programming.

Now that you’ve read the three approaches to programming the 8086, it’s
up to you to make a choice. If you still believe in binary or assembly-language
programming exclusively, the remainder of this chapter would be of little interest
to you. However, if you believe you may have some use for high-level lan-
guages, read on.

Probably the most popular high-level languages are COBOL, BASIC, and
FORTRAN. COBOL is a popular language in commercial data-processing appli-
cations. FORTRAN is used frequently in applications involving numerical com-
putations. BASIC is a favorite language among microcomputer hobbyists be-
cause of its simplicity and its interactive nature; BASIC programs are often
executed directly without first being compiled into machine-language instruc-
tions. PASCAL, a language designed to be used for teaching purposes, has been
gaining in popularity recently as a high-level language.

Intel’s proprietary language PL/M was the first high-level language in-
tended primarily for microprocessor applications and was the first programming
language available for the 8086 (even before 8086 assembly language). PL/M-
86, the 8086 dialect of PL/M, is discussed in detail in this chapter.

Structure of PL/M-86 Programs
Let’s not waste time introducing our first PL/M-86 program.

The 8086 Primer

z

PROG:
DO; /* add inputs divided by 2 until total exceeds 100 */

DECLARE SUM BYTE:
SUM = 0;

DO WHILE SUM <=100;
SUM = SUM+ INPUT(3)/2;
END;

OUTPUT(3) = SUM;
END PROG;

©® Noo H»W =

Without knowing a thing about PL/M-86, you can read and almost understand
the program above. Line 1 seems to be telling us that the name of the program is
PROG, and line 9 seems to confirm this. Line 2 seems to be saying that we're
about to DO something, and line 9 must be saying that we’ve just ENDed doing
it. Furthermore, line 2 contains some English, which is telling us what we’re
about to do. Line 3 must be reserving a byte in memory, probably in a data
segment, and naming it SUM. So far no instructions have been generated. Line 4
looks like the first instruction—moving zero into SUM. Lines 5 through 7 seem
to be related; they are grouped together and start off with DO and finish with
END. They seem to be repeatedly reading in values from input port 3, dividing
them by 2, and adding the result to SUM until SUM exceeds 100. This is just
what the comment in line 2 promised we would do. Finally, line 8 looks like it’s
writing out the SUM to output port 3.

From this example, let’s try to generalize about the structure of a PL/M-86
program. It starts off with a name and ends with the same name. The program
itself is bounded by the words DO and END (although more DO - END pairs may
appear within the program). The program consists of a sequence of statements,
some of which are declarative statements (DECLARE SUM BYTE) and the
others are executable statements (SUM = SUM+INPUT(3)/2). Semicolons are
used profusely; they indicate the end of each statement. The structure of a
PL/M-86 program is shown below:

name:
DO;
statement;
statement;
. declarative statements
statement;
statement;
executable statements
statement;
END name;

The programs presented here all display a consistent indentation pattern.
Such indentation is not part of the program structure. It is purely optional as far
as the PL/M-86 compiler is concerned but is highly recommended to make the

8086 High-Level-Language Programming 155

programs easier for us to read and understand. As an extreme example of this
point, consider the following unindented version of the preceding program. It
would present no additional difficulty to the PL/M-86 compiler (in fact, it would
compile faster) but would be much less comprehensible to us.

PROG: DO:/* add inputs until total exceeds 100 */

DECLARE SUM BYTE;SUM=0;00 WHILE SUM>=100;
SUM=SUM-+INPUT(3)/2;END;OUTPUT(3)=SUM;END PROG;

Tokens

Before examining the kinds of statements from which PL/M-86 programs
are built, we must become familiar with the building blocks of statements.
Statements are composed of such things as identifiers, reserved words, delim-
iters, constants, and comments. These building blocks are sometimes called
tokens.

Identifiers Identifiers are names that you, the programmer, are free to
make up. An example of an identifier in the sample program already discussed is
SUM. An identifier is a sequence of letters and numbers starting with a letter. An
identifier can be up to 31 characters long which means that, for all practical
purposes, the length is unlimited. In order to improve readability, you can embed
dollar signs ($) arbitrarily in an identifier. For instance, the identifier NEWS-
TEAM could be written as either NEW$STEAM or NEWS$TEAM depending
on which meaning was intended. Examples of identifiers are the following:

X

GAMMA
JACKS
THIS$SNODE

Reserved Words Reserved words look like identifiers, but they have
special meaning in the language, and you may not use them as identifier names.
In our sample program, we saw such reserved words as DO, END, DECLARE,
BYTE, and WHILE. Thus it would be perfectly acceptable for us to make up a
name like ENDING as in

DECLARE ENDING BYTE;

but it would be improper for us to write
DECLARE END BYTE;

A complete list of PL/M-86 reserved words is given in Table 6.1.

Delimiters Delimiters are the non-alphanumeric characters appearing in
PL/M-86 programs. In our sample program we saw such delimiters as < = and ;.
Each delimiter has a special meaning in the language, and we will become
exposed to most of them in this chapter. A complete list of delimiters in PL/M-86
is given in Table 6.2.

156 The 8086 Primer

Table 6.1 Reserved Words in PL/M-86

ADDRESS CASE END INITIAL NOT REENTRANT
AND DATA EOF INTEGER OR RETURN
AT DECLARE EXTERNAL INTERRUPT PLUS STRUCTURE
BASED DISABLE GO LABEL POINTER THEN
BY DO GOTO LITERALLY PROCEDURE TO
BYTE ELSE HALT MINUS PUBLIC WHILE
CALL ENABLE IF MOD REAL WOO';!D
X

Table 6.2 Delimiters in PL/M-86

< <> "
> : I

.
VA

@i ne

Constants Constants are the fixed values appearing in PL/M-86 pro-
grams. In our sample program, we saw such constants as 0, 3, and 100. These
are whole-number constants; PL/IM-86 also allows for floating-point constants
and string constants.

A whole-number constant can be any non-fractional value between 0 and
65535 (that is 2!® — 1). It is normally written as a decimal number but can also be
written in binary (ending with a B), octal (ending with a Q), or hexadecimal
(ending with an H). To avoid confusion with identifiers, a hexadecimal constant
must start with a numeric digit; a leading zero would suffice. Examples of
whole-number constants are 15, 1010B, 27Q, 3A0H, and 0BFA3H.

A floating-point constant is a non-negative number with a decimal point. It
may also end with an E followed by a number to indicate multiplication by a
power of 10. Examples of floating-point constants are 15.6, 138., 7.0E3, and
1.32E-7.

A string constant is a sequence of one or two characters enclosed within
apostrophes. (Strings of more than two characters are permitted in very restricted
cases and will not be discussed in this text.) An apostrophe itself may be included
in a string constant by writing it as two consecutive apostrophes. Examples of
string constants are 'A!, IAB', and '!. The last example is the string consisting
of the apostrophe character. The value of a string constant is the ASCII code of
the character(s) in the string (see Appendix C for the ASCII codes). For example,
the value of 'A! is the same as 41H (both have the value 65), and the value of
'AB! is the same as 4142H. Thus string constants and whole-number constants
can be used interchangeably.

Note that a constant is never negative. More will be said about this later.

Comments Comments are sequences of characters enclosed within the
delimiters /* and */. They have no meaning to the compiler but should be used

8086 High-Level-Language Programming 157

generously in your program to keep reminding you of what you are doing.
Although comments like

1 =0; /* 1 equals zero */

would be absurd, comments like

| =0; /* initialize array index prior to first iteration */

go a long way to making a program more readable.

Expressions

One more building block, namely expressions, must be introduced before
we can build statements. The expression itself is built up from some of the tokens
just described.

Loosely speaking, an expression is a sequence of operands and operators
that can be combined to produce a value. So now we must introduce both
operands and operators and indicate how they are combined to produce the value
of an expression.

If you have read and understood the section in Chap. 5 on expressions in
assembly-language programming, you might find the following analogy interest-
ing. In assembly-language programming, the instruction mnemonics (not the
expressions) correspond to the items that get executed (instructions) when the
program is run. In high-level languages, there are no instruction mnemonics; the
expressions represent sequences of instructions that get executed when the pro-
gram is run. Assembly-language expressions are evaluated at the time the pro-
gram is being assembled; high-level language expressions are evaluated when the
program is run.

Operands An operand is something that has a value. The simplest kind
of operand is a constant. Thus 15, 2.7E5, and 'UG! are all operands. Another
kind of operand is a variable representing a single numeric value. Frequently,
this is simply an identifier, such as SUM in the sample program. Unlike a
constant, the value represented by a variable is not known until you execute the
program and will usually take on different values at different times during the
execution. Another operand is an expression itself, enclosed in parentheses and
used in some bigger expression, such as in 3*(SUM+2).

Note that the value of an operand may be negative, but a constant is never
negative. A minus sign can be written in froat of a constant but is never consid-
ered as part of the constant; it is an arithmetic operator.

Operators An operator takes the values of one or more operands and
produces a new value. There are three kinds of operators in PL/M-86—
arithmetic operators, logical operators, and relational operators.

Arithmetic operators are nothing more than the familiar addition operator
(+), subtraction operator(—), multiplication operator (*), and division operator

158 The 8086 Primer

Table 6.3 The ‘type’ of a Constant

Coristant Type
0 <=WHOLE-NUMBER <=255 BYTE OR INTEGER
255 <WHOLE-NUMBER <=32767 WORD OR INTEGER
32767 < WHOLE-NUMBER <=65535 WORD
ONE-CHARACTER STRING BYTE
TWO-CHARACTER STRING WORD
FLOATING-POINT REAL

(/). Another arithmetic operator, MOD, produces the remainder that results after
doing a division. Thus 19/7 is 2, whereas 19 MOD 7 is 5.

Now for some restrictions on arithmetic operators. PL/M-86 permits only
certain operand combinations and not others. For example, PL/M-86 lets you
write 15 + 2 as well as 15.3E7 + 2.1E3. But it prohibits hybrids like 15 +
2.1E3. In order to understand which combinations are permitted, we need to
classify the operands into various types. Variables can be classified as BYTE,
WORD, INTEGER, or REAL. (A variable’s type is specified when the variable
is declared.) A variable of type BYTE can take on any non-fractional value from
0 to 255, type WORD from O to 65535, and type INTEGER from —32768 to
+32767. In other words, a BYTE is an unsigned 8-bit binary number; a WORD
is an unsigned 16-bit binary number; and an INTEGER is a signed 16-bit binary
number. A variable of type REAL can take on the value of any real (fractional or
non-fractional) number within certain limits.

We can extend this notion of types to include constants as well as variables.
We have already seen that a constant can be a one- or two-character string
constant, a floating-point constant, or a whole-number constant. A one-character
string constant is of type BYTE, two-character string constant of type WORD,
and a floating-point constant of type REAL. A whole-number constant can be of
type BYTE, WORD, or INTEGER depending on the value of the constant. This
is summarized in Table 6.3. Note that this table shows the range for integers as
being between 0 and 32767; this is the range of constants that can be treated as
integers, not the range of integer values (—32768 to 32767).

Now that we have classified the operands (constants and variables) into
types, we can state the rule for valid operand combinations for arithmetic
operators. The rule is simple. It states that both operands must be of the same
type. In most cases, the result will also be of that type. For example, you may not
add an INTEGER operand (variable or constant) to a REAL operand (variable or
constant); nor may you add apples to oranges. One exception is permitted: one
operand may be of type BYTE and the other type WORD; the result will be of
type WORD (OK, you can add nickels and dimes).

Such restrictions might appear to make the language harder to learn by
giving us more rules to memorize. On the contrary, they make the language
easier because we only have to remember one general rule—‘‘you can’t mix
types”’—rather than having to memorize a bunch of rules like *‘if you mix this

8086 High-Level-Language Programming 159

type with that type you get some other type.’’ And besides, you probably didn’t
mean to mix types anyhow, so the compiler can help prevent you from making
certain kinds of errors. But, if you’re persistent and really want to mix types, the
language provides routines (not described here) that let you change types.

The relational operators are equal (=), not-equal (< >), less-than (<),
greater-than (>), less-than-or-equal (< =), and greater-than-or-equal (> =). In
case you’re puzzled how we get not-equal from < > , consider not-equal as the
combination of less-than-or-greater-than. Now < > makes sense (of course #
would have made more sense, but it doesn’t exist on standard keyboards).

The valid operand combinations for relational operators are the same as for
arithmetic operators. Thus we can compare two BYTEs, two WORDs, two
INTEGERS, or a BYTE and a WORD. The result of the comparison is always a
BYTE, and the value of that BYTE is OFFH if the comparison is true and O0H if
the comparison is false. For example, 6 >5 yields OFFH; 1.5=2.1 yields 00H;
and 7 >2.3 is an invalid comparison.

The result of a relational operator (true or false) is useful for making tests,
such as in an IF statement. An example of such a test is given:

IF X<10 THEN X = X+1;

The result of X < 10 would be either OFFH (if true) or O0H (if false), and it is this
result that determines whether or not X = X+1 gets executed.

The logical operators are the usual bit-by-bit AND, OR, XOR (exclusive-
or), and NOT. The operands of logical operators must be either of type BYTE
(result will be of type BYTE), of type WORD (result will be of type WORD), or
one of each (result will be of type WORD). For example,

101010108 AND 11001100B is 100010008;

1100110011001100B OR 1111000011110000B is 1100000011000000B;

NOT 11111111B is 00000000B;

and
11110000B XOR 1.7 is invalid.

An interesting thing happens when the operands of a logical operator are
the true or false results of relational operators: the result of the bit-by-bit logical
operation is a BYTE with a meaningful true (OFFH) or false (00H) value. For
example:

(1<2) AND (4>3) yields OFFH AND OFFH yields OFFH (true)
(6=5) OR (1<>0) yields 00H OR OFFH yields OFFH (true)
NOT (1=1) yields NOT OFFH yields OOH (false)

This permits us to construct useful combinations of relations as in:
DO WHILE (A>3) AND (A<10);

Statements :

There are two kinds of statements in PL/M-86—declarative statements and
executable statements. Declarative statements are typically associated with data,
while executable statements are associated with code.

160 The 8086 Primer

A declarative statement introduces an object, associates a name with that
object, and allocates memory for it if necessary. For example:

DECLARE COST BYTE;

This declaration introduces a variable, gives it the name COST, and allocates a
byte of memory for it.

Declarative statements generate no code. Rather, they tell the compiler
what kind of code to generate for succeeding executable statements.

An executable statement describes code to be generated. For example:

PRICE = COST+3;

The code the compiler will generate will probably contain an instruction that
moves the contents of COST into a register. The previous declarative statement
has told the compiler that such a move instruction is to be a byte-move instruction
and not a word-move instruction.

Executable Statements

The various executable statements in PL/M-86 are assignment statements,
selective statements, repetitive statements, and some additional miscellaneous
statements. Each of these statements will be described in this section.

Assignment Statements The simplest kind of executable statement is
the assignment statement. It causes the value of an expression to be assigned to a
variable. The format of an assignment statement is as follows:

variable = expression;

Some examples of assignment statements are below:

LENGTH = 5;
WIDTH = 2*LENGTH;

Just as PL/M-86 keeps us from adding apples to oranges, it also prohibits
us from assigning apples to oranges. In other words, both the expression being
assigned and the variable it is assigned to must be of the same type. Thus we can
write
DECLARE COUNT BYTE;

COUNT = 117;

but we cannot write
DECLARE COUNT BYTE;
COUNT = 6.5;

One exception: we can assign byte expressions to word variables. So we can
write:

DECLARE COUNT WORD;
COUNT = 117;

8086 High-Level-Language Programming 161

To simplify assigning the same value to several variables, an assignment
statement can be written as:

variable, variable, ..., variable = expression;

This is illustrated by:
LEFT, RIGHT = INIT—1;

And assignments can be embedded inside an assignment statement (using a
special assignment operator :=) as in:

VOLUME = HEIGHT *(AREA:=LENGTH*WIDTH);

The following program is an example that uses assignment statements:

FACTORIAL:

DO; /* compute 11, 2!, 3}, and 4!, */
DECLARE FACT1 BYTE;
DECLARE FACT2 BYTE;
DECLARE FACT3 BYTE;
DECLARE FACT4 BYTE;
FACT1 = 1;

FACT2 = 2*FACT1;

FACT3 = 3*FACT2;

FACT4 = 4*FACTS;
END FACTORIAL,;

The following program is identical to the previous one, except it uses embedded
assignments. It also declares all four bytes with one declaration.
FACTORIAL:
DO; /* compute 1!, 2!, 3!, and 4! */
DECLARE (FACT1,FACT2,FACT3,FACT4) BYTE;
FACT4 = 4*(FACT3:=3*(FACT2:=2%(FACT1:=1)));
END FACTORIAL;

Selective Statements If assignment statements were the only execut-
able statements, programmers would get bored quickly. So, to make program-
ming more interesting, the selective statement was invented. There are two kinds
of selective statements—the IF statement and the CASE statement.

The IF statement has the form:

IF expression THEN statement;

An example of an IF statement is given:
IF SPEED>55 THEN FINE = 25;

The IF statement tells what to do if the expression is true. A natural question to
ask is, ‘‘If not, then what?’’ The answer is nothing, unless were told what ELSE
to do as in the following ELSE statement:

IF HEIGHT <6 THEN CLEARANCE = 6—-HEIGHT;
ELSE CLEARANCE = 0;

162 The 8086 Primer

The following program illustrates the use of the IF statement in computing
income taxes:

TAX:

DO;
DECLARE (SALARY,TAX) INTEGER;
DECLARE (AGE, EXEMPTIONS) BYTE;
SALARY = ..; /* insert salary here */
AGE = ...; /* insert age here*/
EXEMPTIONS= 1;
IF AGE>65 THEN EXEMPTIONS = EXEMPTIONS +1;
SALARY = SALARY-750*EXEMPTIONS;
IF SALARY <1000 THEN TAX = 14*SALARY/100;
ELSE TAX = 140+20*(SALARY — 1000)/100;

END TAX:

The IF statement permits specifying only one statement after the THEN.
But any collection of statements starting with a DO statement and ending with an
END statement behaves like a single statement. Such a collection of statements is
called a simple-DO block.

DO:
statement;
statement;
statement;
END;

Now a more complicated IF statement would look like this:

IF MINUTES > =60 THEN
DO;
HOURS = HOURS +1;
MINUTES = MINUTES-60;
END;

The IF statement has the ability to select one or the other of two statements
to be executed depending on the truth or falsity of an expression. The CASE
statement is a more general selective statement. The CASE statement selects one
out of a set of statements based on the value of an expression. It has the form:

DO CASE expression;

A block starting with a CASE statement and ending with a matching END is
called a DO-CASE block. For example:

DO CASE DAYSOFCHRISTMAS;

GO TO ERROR; /* zeroeth day/*
PATRIDGESINSASPEAR$STREE = PARTRIDGESINSASPEARSTREE+1; /* first day */
TURTLE$DOVES = TURTLE$DOVES +2; /* second day */
FRENCHS$SHENS = FRENCH$HENS +3; /* third day */
CALLINGS$BIRDS = CALLING$BIRDS+4; /* fourth day */

GOLDENS$RINGS = GOLDENS$RINGS +5; /* fifth day */

8086 High-Level-Language Programming 163

GEESESASLAYING = GEESE$SASLAYING+6; /* sixth day */
SWANS$ASSWIMMING = SWANSSASSWIMMING +7, /* seventh day*/
MAIDS$ASMILKING = MAIDS$ASMILKING+8; [* eighth day */
DRUMMERS$DRUMMING = DRUMMERS$DRUMMING +9; /* ninth day */
PIPERS$PIPING = PIPERS$PIPING +10; /* tenth day */
LADIES$SDANCING = LADIES$DANCING+11; /* eleventh day */
LORDS$ASLEAPING = LORDS$ASLEAPING +12; /* twelfth day */

END;

If, in the above example, the value of DAYSOFSCHRISTMAS is 7, the
only statement in the block that is executed is:

SWANSSASSWIMMING = SWANS$ASSWIMMING +7;

The entire DO-CASE block is equivalent to the following collection of IF
statements:

IF DAYSOFCHRISTMAS=0 THEN
GO TO ERROR;
ELSE IF DAYSOFCHRISTMAS=1 THEN
PARTRIDGES$INSASPEARSTREE = PARTRIDGES$INSASPEARSTREE +1;
ELSE IF DAYSOF$CHRISTMAS=2 THEN
TURTLE$DOVES = TURTLE$SDOVES+2;
ELSE IF DAYSOFCHRISTMAS=3 THEN
FRENCH$HENS = FRENCH$HENS +3;
ELSE IF DAYOFCHRISTMAS=4 THEN
CALLINGS$BIRDS = CALLING$BIRDS +4;
ELSE IF DAYOFCHRISTMAS=5 THEN
GOLDENS$RINGS = GOLDENS$RINGS+5;
ELSE IF DAYSOF$CHRISTMAS=6 THEN
GEESESASLAYING = GEESE$SASLAYING +6;
ELSE IF DAYOFCHRISTMAS=7 THEN
SWANSSASSWIMMING = SWANS$SASSWIMMING +7;
ELSE IF DAYOFCHRISTMAS=8 THEN
MAIDS$ASMILKING = MAIDS$ASMILKING+8;
ELSE IF DAYSOF$CHRISTMAS =9 THEN
DRUMMERS$DRUMMING = DRUMMERS$DRUMMING+9;
ELSE IF DAYOFCHRISTMAS=10 THEN
PIPERS$PIPING = PIPERS$PIPING +10;
ELSE IF DAYOFCHRISTMAS =11 THEN
LADIES$DANCING = LADIES$DANCING+11;
ELSE IF DAYOFCHRISTMAS =12 THEN
LORDS$ASLEAPING = LORDS$ASLEAPING+12;

The CASE statement was not really necessary; we can always use a bunch of IF
statements as just illustrated. However, when the CASE statement is appropriate,
it makes the program simpler.

Repetitive Statements So far, we have seen how to write a program
that executes statements in sequence, one after another. We also want the ability
to execute one or more statements repeatedly. PL/M-86 provides the ability to
repeat for a given number of times (irerative-DO statement) or for as long as a
given condition is satisfied (DO-WHILE statements). Repetitions can also be
accomplished using the more elementary GOTO statement.

The GOTO statement has the form:
GO TO label

164 The 8086 Primer

GOTO is a single reserved word that, for readability, may be written as the two
words GO TO. The following example illustrates the use of the GOTO statement:

JAIL:

GO Td JAIL; /* go directly -- do not pass go */

The iterative-DO statement has the form:
DO variable = expression TO expression BY expression;

A block starting with an iterative-DO statement and ending with a matching END
is called an iterative-DO block. For example:
DO DAYS = 1 TO 365 BY 7;

WEEKS = WEEKS+1;
END;

The effect of the above example is to assign values of 1, 8, 15, . . ., 365 to
DAYS, and after each assignment execute the statement:

WEEKS = WEEKS +1;

This is equivalent to:

DAYS = 1;
CYCLE:
IF DAYS)=365 THEN
DO;
WEEKS = WEEKS+1;
DAYS = DAYS+7;
GO TO CYCLE;
END;

The following program illustrates how the iterative-DO statement is used to
compute the number of leap years in the twenty-first century:

LEAPS:

DO;
DECLARE YEARS WORD;
DECLARE LEAPSYEARS BYTE;
LEAPS$YEARS = 0;
DO YEARS = 2000 to 2099 BY 4;

LEAPS$YEARS = LEAP$YEARS+1;

END;

END LEAPS;

Iterative-DO statements are frequently incremented by 1. In such cases, the
“BY 1’ can be left off. The following program illustrates this point. The
program computes the sum of the first 10 integers:

8086 High-Level-Language Programming 165

ADD10:
DO;
DECLARE | BYTE;
DECLARE SUM BYTE;
SUM = (;
DOI1=1TO 10;
SUM = SUM+;
END;
END ADD10;

A DO-WHILE statement has the form:
DO WHILE expression;

A block starting with a DO-WHILE statement and ending with a matching END
is called a DO-WHILE block. An example is the following:
DO WHILE DEMAND >SUPPLY;

PRICE = PRICE+1;
END;

The effect of the above example is to repeatedly execute the statement as long as
the value of DEMAND is greater than the value of SUPPLY. This is equivalent
to:

CYCLE:
IF DEMAND>SUPPLY THEN
DO;
PRICE = PRICE+1;
GO TO CYCLE;
END;

Miscellaneous Executable Statements Some final exectable
statements are shown:

HALT;
ENABLE;
DISABLE;

They generate the obvious 8086 instructions that (1) halt the processor, (2)
enable interrupts, and (3) disable interrupts.

Declarative Statements

Scalars The simplest kind of declarative statement is the scalar declara-
tion. Such a declaration defines a variable representing a single numeric value.
Examples of such declarations are below:

DECLARE LITTLE$THINGS BYTE; /* an 8-bit unsigned value */
DECLARE BIG$THINGS WORD; /* a 16-bit unsigned value */
DECLARE SIGNED$THINGS INTEGER,; /* a signed value */
DECLARE FRACTIONAL$THINGS REAL: /* a real value */

In these examples LITTLESTHINGS may be assigned any whole number be-
tween 0 and 255, BIGSTHINGS any whole number between 0 and 65535,

166 The 8086 Primer

SIGNEDS$THINGS any whole number between —32768 and +32767, and
FRACTIONALSTHINGS any floating-point number within certain limits. Here
are some examples of using the variables just declared:

LITTLESTHINGS = 57;

BIGSTHINGS = 43195;

SIGNED$THINGS = —14216;
FRACTIONALSTHINGS = 27.148;

You know that you have to declare your variables, but how do you know
what to declare them to be? Should they be BYTEs, or WORDs, or INTEGERs,
or REALs? To answer that, you have to think about each variable and decide
what range of values will be assigned to it when the program runs. If the variable
is something like NUMBERSOF$WIVES, or BALL$SCORE, or any other vari-
able that will never be negative, or fractional, or exceed 255, you can declare it
to be a BYTE. If it can get bigger than 255 but not bigger than 65535—such as
PAGESSSINSBOOK, NUMBER$OFSEMPLOYEES (in a medium-sized com-
pany), or GRAINSOFSAND (in a small sandbox)—then declare it to be a
WORD. If it can be negative as well—such as CHECK$BOOK$BALANCE—
use INTEGER. REALSs can be used in two different situations. They are used for
things that get REALLY big, like WEALTH or DESCENDANTSSOFSADAM.
They are also used for things that occur in the REAL world and are therefore
“measured’’ instead of ‘‘counted,”’ such as MILESPERSGALLON or
SPECIFIC$GRAVITY. Of course, REALs can be used for things that are both
big and measurable, such as SPACESMILES or SECONDSS$SINCE$CREA-
TION. If you’re not sure what range of values your variable might take on when
the program runs, you should anticipate the worst and declare it to be REAL;
similarly, if your variable can take on positive whole number values that may
only occasionally get slightly bigger than 255, you must declare it to be a
WORD. By erring on the side of caution like this, your program will still be able
to execute properly; although your code size might be larger than necessary, and
your program might run slower than necessary. If you erred in the other direc-
tion, your program would either die completely or (worse yet) give incorrect
results.

Related Items So far we have seen only scalar declarations. They intro-
duce variables that can have only one value at a time, and they show no relation-
ships among any of the values in a program. But frequently values are related,
and programs can be simplified by grouping the related values together. For
example, consider a program that reads in the age (to the nearest year) of 10
people and then determines how many of them are over 40. The following is the
hard way to solve the problem:

OVER%48THEHARD$WAY:
" DECLARE AGES0 BYTE;
DECLARE AGE$1 BYTE;

DECLARE AGE$2 BYTE;
DECLARE AGE$3 BYTE;

8086 High-Level-Language Programming 167

DECLARE AGE$4 BYTE;
DECLARE AGE$5 BYTE;
DECLARE AGE$6 BYTE;
DECLARE AGE$7 BYTE;
DECLARE AGE$8 BYTE;
DECLARE AGE$9 BYTE;
DECLARE OVER$40 BYTE;

/* read in the ages */

OVERS$40 = 0; /* initialize the count */
IF AGE$0>40 THEN OVER$40 = OVER$40+1;
IF AGE$1>40 THEN OVER$40 = OVER$40+1;
IF AGE$2 >40 THEN OVER$40 = OVER$40+1;
IF AGE$3 >40 THEN OVER$40 = OVER$40+1;
IF AGE$4 >40 THEN OVER$40 = OVER$40-+1;
IF AGE$5>40 THEN OVER$40 = OVER$40+1;
IF AGE$6>40 THEN OVER$40 = OVER$40+1;
IF AGE$7>40 THEN OVER$40 = OVER$40+1;
IF AGE$8>40 THEN OVER$40 = OVER$40+1;
IF AGE$9>40 THEN OVER$40 = OVER$40+1;
’ : /* do something with result */

END OVER40THE$SHARDSWAY;

Obviously, the variables AGE$0, AGE$1, . . ., AGE$9 are related to each other
in the sense that all of them are ages. PL/M-86 allows such related variables to be
grouped together as one variable with 10 byte values. Such a variable, AGE,
would be declared by:

DECLARE AGE (10) BYTE;

Such a multivalued variable is called an array. The individual components
(called elements) in the array AGE can be referred to as AGE(0), AGE(1), . . .,
AGE(9). Now the previous program can be rewritten as follows:

OVER40 THESEASY$WAY:

DO;

DECLARE AGE (10) BYTE;
DECLARE OVER$40 BYTE;
DECLARE | BYTE;

/* read in the ages */

OVER$40 = 0: /* initialize the count */
DOI=0t9;
IF AGE(l)>40 THEN OVER$40 = OVER$40+1;

END;

/* do something with result */

END OVER40THESEASYSWAY;

Arrays may be of types other than BYTE as shown by the following

examples:

DECLARE LOTS$OFSLITTLESTHINGS (100) BYTE;
DECLARE LOTSOFBIG$THINGS (25) WORD;

168 The 8086 Primer:

DECLARE LOTSOFSSIGNED$THINGS (50) INTEGER,;
DECLARE LOTSOFFRACTIONALSTHINGS (10) REAL;

Another method of grouping related variables together is the structure. An
example of a structure is
DECLARE RELATEDS$THINGS STRUCTURE
(LITTLESTHING BYTE, BIG$THING WORD);
and the individual components (called members) in the structure can be referred
to as RELATEDS$THINGS.LITTLE$THINGS and RELATEDS$THINGS.
BIG$THING. There are several obvious differences between structures and ar-
rays:
1. The components of an array are called elements; the components of a
structure are called members.
2. The elements of an array are all of the same type, while the members of
a structure may be of differing types.
3. An element in an array is referred to by its position in the array (which
may be the value of a variable). A member in a structure is referred to
by its name (which is fixed in the program).

The members of a structure can be scalars or arrays. An example of a
structure member being an array is as follows:

DECLARE PERSON STRUCTURE (NAME (15) BYTE,
AGE BYTE, HEIGHT REAL, WEIGHT REAL);

The individual members in this structure can be referred to as PERSON.NAME
(0), PERSON.NAME (1), . . ., PERSON.NAME (14), PERSON.HEIGHT, and
PERSON.WEIGHT. Other examples of structure members being arrays are
shown:

DECLARE PAYCHECK STRUCTURE (NAME (15) BYTE, SALARY WORD);

DECLARE AUTOMOBILE STRUCTURE (CHASSISSNUMBER WORD,
CYLINDERS BYTE, TIRESPRESSURE (4) REAL);

Now that we’ve seen arrays inside of structures, let’s take a look at struc-
tures within arrays. For example:

DECLARE PLAYING$CARD (52) STRUCTURE (SUIT BYTE, VALUE BYTE),

Some of the components in this array of structures are PLAYING$CARD (7).
SUIT and PLAYINGS$CARD (25).VALUE. Let’s go one step further and look at
arrays within structures within arrays such as:

DECLARE PAYCHECK (100) STRUCTURE (NAME (15) BYTE, SALARY WORD);

Some of the components here are PAYCHECK (38).NAME (7) and
PAYCHECK (70).SALARY. You may be wondering where this will all end.
Don’t worry; it just did. PL/M-86 prohibits structures within structures, so an
array of structures containing arrays is the most complex thing we can declare.

It’s time for us to look at an example involving structures. Consider a
company that keeps all its payroll information in a computer file. Every payday
the company runs its payroll program, which reads this file and prints the

8086 High-Level-Language Programming 169

paychecks. But now it’s raise time, and the company wants to give everybody a
$200 raise. So it executes the following program:

RAISES:
" DECLARE PAYCHECK(100) STRUCTURE
(NAME (15)BYTE, SALARY WORD);
DECLARE | BYTE;

/* read in the payroll file */

DOI = 0 to 99; /* increase everyone’s salary */
PAYCHECK().SALARY = PAYCHECK(l).SALARY +200;
END;

/* write out the updated file */
END RAISES;

Memory Locations When we write a declaration such as,
DECLARE MY$SPECIALSBYTE BYTE;

in our program, we are telling the compiler to pick some unused byte in memory
and reserve it for MY$SPECIALSBYTE. Usually we don’t care where in mem-
ory that byte is located. But every so often we must assert ourselves so that we
can feel we are the masters over the machine. To cater to our needs, PL/M-86
allows us to specify the location explicitly as follows:

DECLARE MY$SPECIALSBYTE BYTE AT (3000H);

Such explicit control is useful if certain locations have very specialized mean-
ings. For example, we may have wired up our processor so that location 3000H
does not refer to a memory location but refers to an input port instead. As we saw
in Chap. 4, this is called memory-mapped 1/0. In that case, it would be very
important that the variable MY$SPECIAL$BYTE refer to location 3000H and to
nowhere else.

Even when we don’t tell the compiler where to locate a variable, there are
times when we need to know which location the compiler picked. That location is
a constant (it doesn’t ever change during the execution of our program), and we
might want to use that constant in our program. PL/M-86 lets us express that
constant without telling us what the constant is. This is done by writing
@MYS$SPECIALSBYTE in the program whenever we want to refer to the loca-
tion of MY$SPECIAL$BYTE. Such constants are called reference-location con-
stants. 4

One thing we might want to do with a reference-location constant is specify
the location of one variable in terms of the location of some other variable. For
example:

DECLARE FLOOR (20) WORD;
DECLARE LOBBY AT (@FLOOR(0));

170 The 8086 Primer

Thus we can refer to the ground floor either by FLOOR(0) or by its nickname
LOBBY.

Another thing we might want to do with a reference-location constant is
assign it to some other variable. For example, we might want to write:

MY$SPECIALSLOCATION = @MY$SPECIAL$BYTE;

But before we write such an assignment, let’s make sure we’re not assigning
apples to oranges. To determine this, we need to know the type of @M Y$SPE-
CIALS$BYTE. It can’t be of type BYTE, WORD, or INTEGER because there
can be more than one million values that @MY$SPECIALS$BYTE could have.
And it would be strange for PL/M-86 to consider @MY$SPECIAL$BYTE as
being of type REAL since locations in memory are never fractional values. So
PL/M-86 has a special type called POINTER, which it uses to refer to locations
in memory. Reference-location constants are of type POINTER. Also, whole-
number constants can be of type POINTER instead of type BYTE, or WORD, or
INTEGER, depending on where they’re used. The following are examples of
valid PL/M-86 assignments involving pointers:

DECLARE OZ REAL,
DECLARE YELLOWS$BRICK$ROAD POINTER;
YELLOWSBRICK$ROAD = @0Z;

DECLARE DATA$SPNTR POINTER;
DATASPNTR = 3A07H;

Pointers are very restrictive in terms of where they can be used. They may
not be used with arithmetic or logical operators. For example, the statement

DATASPNTR = DATASPNTR+1;

is invalid. The only operators that can be applied to pointers are the relational
operators. Thus the following is valid:

IF DATASPNTR=YELLOW$BRICK$ROAD THEN ..,;

So if all we can do with pointers is compare them and assign to them, are
they really useful? The answer to that question lies in the fact that we really don’t
want to do much with pointers but want to do a lot with the things they’re
pointing to. We want some way to refer to the thing being pointed at and use that
just like any other variable in our program. We can assign a name to the thing
being pointed at as follows:

DECLARE ITEM$PNTR POINTER;
DECLARE ITEM BASED ITEM$PNTR BYTE;

In this example, ITEM is declared to be the name of the byte that ITEM$PNTR
points at. The location of ITEM is not fixed; it changes whenever a new value is
assigned to ITEM$PNTR. ITEM is called a based variable; it is ‘‘based’’ on
ITEM$PNTR.

8086 High-Level-Language Programming 171

An example of a program that uses a based variable would certainly be
helpful now. The following program zeros the largest value in an array of words.
First, we’ll do it without based variables and then with based variables so you can

compare them.

WITHOUT$BASED$VARIABLES:
DO;
DECLARE ITEM (50) WORD;
DECLARE BIG$ITEM$INDEX BYTE;

DECLARE | BYTE;

BIGSITEMSINDEX = O;
DOl = 1TO 49;
IF ITEM(I) > ITEM(BIGSITEMSINDEX)
THEN BIGSITEMS$INDEX = I;
END;
ITEM(BIGSITEMSINDEX) = 0;

END WITHOUT$BASED$VARIABLES;

WITH$BASEDS$VARIABLES:
DO;
DECLARE ITEM (50) WORD;
DECLARE BIGSITEM$PNTR POINTER;
DECLARE BIG$ITEM BASED BIG$ITEM$PNTR
WORD;
DECLARE | BYTE;

BIGSITEMSPNTR = @ITEM(0);
DOI =1TO 49;
IF ITEM (l) > BIG$STEM
THEN BIGS$ITEM$PNTR = @ITEM(D);
END;
BIGS$ITEM = 0;

END WITH$éASED$VARIABLES;

/* the array of words */

/* index into array for
biggest value */

/* a running index into
array */

/* read in the 50 values */

/* initialize the index */
/* find the biggest item */

/* zero out the biggest
item */

/* write out the 50 values */

/* the array of words */
/* pointer to biggest value */

/* this is the biggest item */
/* a running index into array */

/* read in the 50 values */

/* initialize the pointer */
/* find the biggest item */

/* zero out the biggest item */

/* write out the 50 values */

Literal Declarations As a convenience feature, PL/M-86 lets us assign a

name to a sequence of characters. For example:
DECLARE PI LITERALLY '3.14159;

Then we can use PI later on in the program as a shorthand for 3.14159. Another
use for such a declaration is to declare a constant that we might want to change

172 The 8086 Primer

next week (or next month, or next year). Rather than use that constant throughout
the program, we give the constant a name like

DECLARE BUFFER$SIZE LITERALLY '32';

and use BUFFERSSIZE throughout the program. Now we need only make the
change in one place. Things like PI and BUFFERS$SIZE that are declared with
LITERALLY are called macros.

Some programmers have discovered that they can even use LITERALLY
to create synonyms for the reserved words in PL/M-86. Using this trick, they
have shown how easy it is to write unreadable programs such as:

DECLARE LTL LITERALLY 'LITERALLYY
DECLARE DCL LTL 'DECLAREY,

DCL WRD LTL 'WORD?;
DCL MQP WRD; /* huh? */

You’re free to use this trick if you wish, bt dnt cm 2 me whn u gt n trbl.
Fortunately, the name of a macro must be an identifier. Otherwise, think of
the fun we could have by defining and using such macros as:

DECLARE ? LITERALLY °}; * no good */

Procedures

A very important concept in programming is the subroutine or procedure. It
provides the ability to execute a section of code at several different places in the
program without having to repeat the code at each of these places. Consider, for
example, the problem of making change for a dollar:

MAKING$CHANGE:
DO;
DECLARE COINS (8) BYTE; /* this is the result */
DECLARE CHANGE BYTE; /* number to be converted */
DECLARE | BYTE; /* index into. COINS array */
CHANGE = 100—...; /* write the cost here */
1=0; [*initialize the index */
DO WHILE CHANGE >=50; /* half dollars */
COINS(l) = 50;
I = 1+1;
CHANGE = CHANGE-50;
END;
DO WHILE CHANGE >=25; /* quarters */
COINS(l) = 25;
| = 1+1;
CHANGE = CHANGE—25;
END;
DO WHILE CHANGE >=10; /* dimes */
COINS(l) = 10;
| = 1+1;
CHANGE = CHANGE-10;
END;
DO WHILE CHANGE >=5; /* nickels */
COINS(l) = 5;
| = 1+1;

CHANGE = CHANGE-5;

8086 High-Level-Language Programming 173

END;
DO WHILE CHANGE > =1;
COINS(l) = 1;
| = 1+1;
CHANGE ='CHANGE-1;
END;
DO WHILE 1<8;
COINS(l) = 0;
I =1+1;
END;

END MAKING$CHANGE;

Notice that the sequence of code

COINS(l) = X;
| =1+1;)
CHANGE = CHANGE-X;

/* pennies */

/* zero out rest of coins */

for different values of X occurs in several places. It sure would simplify the
program if we could write this code only once and then call upon it from different
places in the program. PL/M-86 lets us do just that by declaring the code to be a

procedure as follows:

MAKING$CHANGE$WITH$PROCEDURES:
DO;
DECLARE COINS (8) BYTE;
DECLARE CHANGE BYTE;
DECLARE | BYTE;

NEXT$COIN:
PROCEDURE (X);
DECLARE X BYTE;
COINS(l) = X;
1 =1+1;
CHANGE = CHANGE-X;
END NEXT$COIN;

CHANGE = 100-...;

I =0;

DO WHILE CHANGE > =50;
CALL NEXT$COIN(50);

END;

DO WHILE CHANGE >=25;
CALL NEXT$COIN(25);

END;

DO WHILE CHANGE > =10;
CALL NEXT$COIN(10);

END;

DO WHILE CHANGE >=5;
CALL NEXT$COIN (5);

END;

DO WHILE CHANGE >=1;
CALL NEXT$COIN(1);

END;

DO WHILE 1< 8;
CALL NEXT$COIN(0);

END;

END MAKING$CHANGES$SWITH$PROCEDURES;

/* this is the result*/

/* number to be converted */

/* index into COINS array */

/* this is a procedure
declaration */

/* X is specified when procedure
is called */

/* write the cost here */
/* initialize the index */
/* half dollar */

/*quarters */

/* dimes */

/* nickels */

/* pennies */

/* zero out rest of coins */

174 The 8086 Primer

This previous example has illustrated the fact that a procedure is a section
of code that is declared rather than executed. It appears along with the other
declarative statements of the program. It can be called into execution from other
parts of the program by using CALL statements.

Passing Information In many applications, we need to send input in-
formation to a procedure and receive output information (results) back. The
simplest method of sending information to a procedure is by placing the informa-
tion in a specific variable (or variables) before calling the procedure. The proce-
dure knows to look in that variable. The same variable is used every time the
procedure is called. The procedure can use this method for returning its results as
well. An example of transferring information through specific variables is the
following:

Declaration Call
UP$SCOUNT: CALL UP$COUNT;
PROCEDURE;

COUNT = COUNT+1;
END UP$COUNT,;

In this example, COUNT is the specific variable used both for sending informa-
tion to the procedure and for receiving information from the procedure.
Another method of sending information to a procedure is by specifying the
information every time the procedure is called. Information specified in this
manner is called a parameter. An example of a parameter is the 50 in:

CALL NEXT$COIN(50);
Within the procedure, there is a variable corresponding to each parameter.

Each time the procedure is called, the values of the parameters are placed in the
corresponding variables. An example of using parameters is shown below:

Declaration Call
DECLARE MAX BYTE;
CHECKS$SIZE: DECLARE MIN BYTE;
PROCEDURE (1,J); .
DECLARE | BYTE; CALL CHECKS$SIZE(MAX,
DECLARE J BYTE; MIN);
IF 1<J THEN COUNT = COUNT+1;
END CHECKS$SIZE;

In this example, the values (not the locations) of MAX and MIN are passed
to CHECK$SIZE and become the values of its parameters I and J. CHECK$SIZE
does not know where MAX and MIN are located and therefore cannot change
their values.

If a parameter contained the location of a value instead of the value itself,
the procedure could either fetch a value from that location or place a result in that
location or both. This is illustrated in the following example:

8086 High-Level-Language Programming 175

Declaration Call
DECLARE FIRST BYTE;
SWITCH: DECLARE LAST BYTE;
PROCEDURE (1,J);
DECLARE | POINTER; CALL SWITCH(@FIRST,
DECLARE J POINTER; @LAST);

DECLARE VAL$I BASED | BYTE;
DECLARE VAL$J BASED J BYTE;
DECLARE TEMP BYTE;
TEMP = VALSI;
VALS$! = VALSJ;
VALS$J = TEMP;

END SWITCH;

Notice that what was passed to the procedure was not the value of FIRST
and LAST but rather their locations—namely @FIRST and @LAST. Thus the
values in I and J are the locations of FIRST and LAST. Now we need variables
within the procedure that correspond to FIRST and LAST. But this is exactly
what we get when we declare variables VALS$I and VALS$J that are based on I
and J. So within the procedure, we can talk about VALS$I and VAL$]J as if they
were the variables FIRST AND LAST.

There is one more way a result can be returned from a procedure. But
before looking at this final method, let’s introduce the RETURN statement. Up
to this point, we have been assuming that the procedure returns when it gets to its
END statement. In fact, we could make this explicit by writing a RETURN
statement just before the END statement as shown below:

UPCOUNT:
PROCEDURE;
COUNT = COUNT+1;
RETURN; /* this statement is optional */
END UPCOUNT;

Such a RETURN statement is not necessary since the compiler understands
that it must do a return whenever it gets to the end of a procedure. However,
some procedures might want to return before the end is reached. In such cases, an

explicit RETURN statement is necessary. The following procedure illustrates
this:

UPCOUNT:
PROCEDURE;
IF COUNT=10 THEN RETURN;
COUNT = COUNT+1;
RETURN; /* this statement is optional */
END UPCOUNT;

Now we can look at the final way a result can be received from a
procedure—in the procedure’s name. The procedure is not called into execution
with a CALL statement; instead, it is called by using the name of the procedure
as an operand in an expression. Let’s look at the following example:

176 The 8086 Primer

Declaration

PHONES$BILL:
PROCEDURE (NUMBERSOFCALLS) WORD;
DECLARE NUMBEROFCALLS BYTE;
RETURN 500+5*NUMBEROFCALLS;
END PHONES$BILL;

Use
EXPENSES = PHONES$BILL(78)+ELECTRICS$BILL(113)+...;

Procedures that return results on their own name are distinguished from other
procedures in two ways. First, the RETURN statement(s) specify the value of the
result to be returned (and thus the RETURN statement before the END statement
is no longer optional). Second, the procedure specifies the type (WORD in the
PHONES$BILL example) of the result to be returned. Such procedures are called
typed procedures.

Thus we have seen three ways of sending information to procedures and
three ways of receiving information back. These ways are summarized below:

Sending to Procedure Receiving from Procedure
specified variables specified variables

value parameters location parameters
location parameters typed procedures

Interrupt Procedures The interrupt mechanism of the 8086 was de-
scribed in Chap. 3. Briefly summarizing it, an external device can interrupt the
processor by sending the processor an interrupt signal and a number between 0
and 255. The processor responds to the interrupt signal by executing an interrupt
routine corresponding to the number. PL/M-86 allows you to specify interrupt
routines by declaring procedures that include interrupt numbers. Such procedures
are called interrupt procedures. Unlike conventional procedures that are called
into execution with CALL statements, an interrupt procedure is called into execu-
tion automatically when the processor responds to an interrupt. The following
procedure would be called into execution when interrupt type 75 occurs:
KEY$PRESS:

PROCEDURE INTERRUPT 75;

CHARACTER = INPUT(1);
END KEY$PRESS;

Reentrant Procedures It is sometimes, although not often, desirable to
have a procedure call itself. As an example, we might want to write a procedure
that calculates factorials (remember factorials?—things like 7! =
7*6*5*%4*3*2*] and things like 100! = a-very-big-number). One way to calcu-
late 7! (pronounced seven factorial) would be to calculate 6! and multiply the
result by 7. So the factorial procedure that is asked for the factorial of X could
call upon the factorial procedure (which means calling upon itself) to calculate
the factorial of X—1 and then multiply that result by X. But if we’re not careful,
this may never end. So to make sure this sequence of procedure calls terminates,

8086 High-Level-Language Programming 177

the factorial procedure, when asked for the factorial of 1, could simply return the
result 1 without calling on any other procedures. An example of the factorial
procedure written in PL/M-86 is shown below:
FACTORIAL:
PROCEDURE (X) WORD REENTRANT;
DECLARE X BYTE;
IF X=1 THEN RETURN 1;

RETURN X*FACTORIAL(X~1);
END FACTORIAL;

The FACTORIAL procedure contains something we haven’t seen before—
namely the designation REENTRANT in the procedure declaration. This tells the
compiler that the procedure might be entered at least once more before it finishes
and returns the answer it was initially asked for. The compiler has to know this so
that it can preserve any information (such as the value of X) associated with the
intitial entry. Let’s see what would happen if the compiler didn’t preserve this
information. When the FACTORIAL procedure is called from a statement such
as

ANSWER = 1+FACTORIAL(7);

the value of variable X is 7. The FACTORIAL procedure will then call on
FACTORIAL(7—1). Now the FACTORIAL procedure will be reentered with X
having a value of 6. The original value of X, namely 7, has been lost. But with
that value of X lost, the initial call on FACTORIAL(7) will no longer be able to
return the correct result for X*FACTORIAL(7—1). What saves the day is the
designation REENTRANT; it causes the compiler to use a different memory
location for X each time the procedure is entered.

A procedure calling itself is only one way a procedure might be reentered.
Another way is for a procedure to call on a second procedure, and that second
procedure in turn to call on the original procedure. Both of these forms of
reentrancy are called recursion. A procedure can also be reentered if an interrupt
occurs while the procedure is being executed and, during the interrupt process-
ing, the procedure is called again. Such popular (?) procedures as IN-
VERSE$SHYPERBOLIC$COSECANT might very well be called upon during
the main stream of processing and also during the servicing of an interrupt.

Any procedures that might be entered more than once before returning
must be designated as REENTRANT if they are to execute correctly. If in doubt
about any procedures, you can always designate them as REENTRANT, and
they will execute correctly. The only penalty you pay for designating a procedure
as REENTRANT is that the procedure can’t put a value into a variable local to
the procedure and expect to find that same value the next time the procedure is
called.

Indirect Procedure Calls To end this section with a bit of confusion,
let’s assume we want to call on a procedure, but we don’t know which one. And
we won’t know which one until the program is in execution. For example, we

178 The 8086 Primer

want to convert 50 into a sequence of digits, but the kind of conversion varies
depending on what came before. This can be done as follows:

DECLARE A$CONVERSION$SROUTINE POINTER;

A$CONVEHSION$R.OUTINE = @CONVERTSTOSBINARY;
GO TO COMMONSPLACE;

A$CONVERSION$§0UTINE = @CONVERTTOOCTAL;
GO TO COMMONS$PLACE;

A$CONVERSION$Fi0UTINE = @CONVERTTOSHEXADECIMAL;
GO TO COMMONSPLACE;

A$CONVERSION$R'OUTINE = @CONVERTTOROMANSNUMERALS;
GO TO COMMONSPLACE;

COMMONSPLACE:
CALL A$CONVERSION$ROUTINE (50);

At various places throughout this program, we assign the location of some
conversion routine to ASCONVERSIONSROUTINE. Then, when we get to
COMMONSPLACE, we can call on a conversion routine indirectly and even
pass a parameter to it as shown above.

Block Structure and Scope

So far we have seen how to declare objects (variables, procedures, labels,
macros) in one part of a program and use them somewhere else in the program.
But we ’ve never said just where in the program we can refer to objects once they
are declared. The portions of a program in which the name of an object is
recognized is called the scope of the object.

Before we can talk about scope, we must introduce the concept.of a block.
A block is a sequence of statements starting with either DO or PROCEDURE and
ending with the matching END. An entire PL/M-86 program is a block.

Other kinds of blocks in PL/M-86 are as follows:

Procedure declaration
Simple-DO block
DO-WHILE block
Iterative-DO block
DO-CASE block

A Y

8086 High-Level-Language Programming 179

We have already seen that objects can be declared at the beginning of a procedure
declaration. They may also be declared at the beginning of any simple-DO block.

Now we can define the scope of an object. The scope is specified by the
following equation:

scope = block in which object is declared
+ all nested blocks
— those nested blocks that redeclare the same identifier

One restriction is that objects must be declared before they are used (this
makes the compiler’s life much simpler) with the exception of reentrant proce-
dures (the compiler has agreed to work overtime for us here). But since labels are
objects, we have to say what we mean by ‘‘the declaration of a label.’’ A label is
considered to be declared at the head of the smallest block of any kind enclosing
the *‘label:.”” Let’s clarify and motivate these scope rules with some examples:

Example 1: Scope includes block in which object is declared.

DO;
DECLARE X BYTE;

X = X+1; /* of course this is within the scope of X */
END;

Example 2: Scope includes nested blocks as well.

DO;
DECLARE X BYTE;
DO;
DECLARE Y BYTE;
X =Y+1; /* this is also within the scope of X */
END;
END;

Example 3: Scope does not include nested blocks in which same identifier is
redeclared.

DO;
DECLARE X BYTE;
DO;
DECLARE X (5) BYTE;
X = X+1; /* error since this is outside the
scope of scaler X */
X(3) = X(2)+1; /* however, this is within the
scope of array X */
END;
X = X+1; /* and this is within the scope of
scaler X */
END;

Example 4: Scope does not include outer block.

DO;
DO;
DECLARE X BYTE;
END;
X = X+1; /* error since this is outside the scope of X */

END;

180 The 8086 Primer

Example 5: Objects must be declared before being used.

DO;
A:
‘PROCEDURE;
X = X+1; /*-error since X not'yet declared */
END A;
DECLARE X BYTE;
END;

Example 6: Labels can be forward referenced.

DO;
/*declaration of L considered as ‘being here */
GO TOL; /* OK since L already declared */
L: /* this is not the declaration */

END;

Example 7: Label scope includes inner blocks as well.

DO;
/* declaration of L considered here */
DO;

GO TOL;
END;
L: /* this is not the declaration*/
END;

Example 8: Reentrant procedures can be called before being declared.
DO;

PROCEDURE REENTRANT;
CALL B;
END A;

PROCEDURE REENTRANT;
CALL A;
END B;
END;

In this case, it would be impossible to declare both procedures (A and B)
before either one is referenced since each one refers to the other. This explains
why REENTRANT procedures are exceptions to the ‘‘declare being using’’ rule.

Input and Output

No discussion of a programming language would be complete without a
description of how to get data into the program and how to get answers out. In

our early example, we saw how to get data in with
SUM = SUM+INPUT(3);

and how to get answers out with
OUTPUT(3) = SUM;

8086 High-Level-Language Programming 181

In general, a byte of data can be read from any input port i by using INPUT(i) as
an operand in an expression, and a byte of data can be written to any output port j
by using OUTPUTY(j) on the left side of an assignment statement. Furthermore, a
word of data can be read from or written to.a port by using INWORD(i) or
OUTWORDYj). An example of a program that reads 16-bit data values from the
first 100 input ports and writes them out to the corresponding output ports is as
follows:

INSONE$PORTSANDSOUTSTHESOTHER:

DECLARE | BYTE;
DO I = 0 TO 99;
OUTWORD(!) = INWORD(l);
END;
END INSONESPORT$ANDSOUT$THESOTHER;

Modular Programming

So far we have been calling the block of code starting with *NAME: DO;*’
and ending with ‘‘END NAME;”’ a program. In truth, this is only a module; a
program is a collection of one or more modules. Each module is compiled
independently of the other modules. This enables a program to be subdivided
among several programmers. It also permits a single programmer to partition his
program into small, easily comprehended sections.

Let’s review the structure of a module. It takes the following form:

NAME:
DO;
statement;
statement
statement;
END NAME;

The above statements can be either declarative statements or executable
statements (with declarative statements coming first). Any of the statements may
be blocks (procedure declarations, DO-WHILE blocks, etc.) with other
statements included in them. We need to distinguish those statements explicitly
mentioned in the form above from any statements that may be included in those
statements. Thus we will use the term statements on the outermost level to refer
to those statements explicitly shown above.

One of the modules that comprises a program is given the name main
program. Actually, main module would have been a better name, but it’s too late
now to change history. The main program consists of (possibly) declarative
statements and (certainly) executable statements on the outermost level. In fact,
the main program could be the complete program by itself. However, it some-
times lacks the declarations of some of the objects referred to in its executable
statements. These declarations are to be found in the other modules. The other

182 The 8086 Primer

modules are distinguishable from the main program because they contain only
declarative statements on the outermost level.

So now a technique for using modules emerges. We might subdivide a
program into the task of reading or writing the data from some complex data
structure (such as might be found in an airline reservation system) and the task of
manipulating the data that was read or is to be written. The procedure declara-
tions of those procedures that read or write the data, along with the declaration of
the data itself, could be written into one module. The actual manipulations on the
data (the booking of the reservations) would go into the main program and might
even be written by a different person.

We have previously made the point that declarative statements conveyed
information to the compiler so that it would know what kind of code to generate
for the executable statements. For example,

DECLARE THIS$HERE$THING WORD;

lets the compiler know that when it encounters
THISSHERESTHING = 0;

it must generate code to zero out two bytes of memory rather than just one byte.
Furthermore, the DECLARE statement caused the compiler to reserve a specific
pair of bytes for THISSHERE$STHING. Thus, the compiler knew which two
bytes had to be zeroed when the assignment statement was encountered.

Now if the declaration for THISSHERE$THING is in some other module,
the compiler is stymied when it sees the assignment statement involving
THIS$SHERES$THING. It could possibly do without the location of
THISSHERESTHING by generating code that zeros out any old location and
making a note that someone has to fill in the correct location later. But the
compiler can’t generate any code at all unless it knows whether
THISSHERES$THING is a BYTE or a WORD.

To help the compiler, any module that uses THISSHERE$THING without
declaring it must at least tell the compiler what sort of a thing it is. It does this by
saying that THISSHERE$THING is a WORD that is declared external to this
module. In PL/M-86 this is written:

DECLARE THIS$HERE$THING WORD EXTERNAL;

Although this looks like a declaration, it is not; it merely specifies the type of
THIS$HERES$STHING but does not reserve any memory for it. The compiler can
now generate the right kind of code for the assignment statement, but it still
doesn’t know what memory location to put in the code.

In the module where THISSHERES$STHING is really declared, it would be
nice to tell the compiler that some other module is going to use
THIS$SHERES$THING. Then the compiler could make a note of the location of
THIS$SHERESTHING so that later someone can fill that location into the code
generated by the other module. Thus we write the declaration as

DECLARE THIS$SHERE$THING WORD PUBLIC;

8086 High-Level-Language Programming 183

to make it clear to the compiler that this declaration is public information,
available for use by other modules.

After all the modules have been compiled, someone still has to go around
reading all the notes left by the compiler. These notes are attached to the code
generated for each module, and they specify either (1) where the location of
THIS$SHERES$THING has to be written into the code or (2) what the location of
THIS$HERES$THING is. The location of THISSHERESTHING can then be
written into the appropriate places in the code. This process is referred to as
linking the code of the various modules together. A person or a program that does
this linking is called a linker. Don’t panic; you won’t have to be a linker. When
you receive your PL/M-86 compiler, you’ll also find a linker program in the
same package.

The following example illustrates the use of modules. The first module is
the main program and uses SUCCESSOR and COUNT.

M1:

DO; /* first module */
DECLARE COUNT BYTE PUBLIC; /* here's a declaration */
SUCCESSOR:

PROCEDURE (X) BYTE PUBLIC; /* here's another */
DECLARE X BYTE;
RETURN X+1;
END SUCCESSOR;
END Mf1;
M2:

DO; /* second module */
DECLARE ARG BYTE; /* this is a declaration */
DECLARE COUNT BYTE EXTERNAL; /* this is not */
SUCCESSOR:

PROCEDURE (X) BYTE EXTERNAL; /* nor is this */
DECLARE X BYTE;
END SUCCESSOR;
ARG = 3;
COUNT = SUCCESSOR(ARG);
END M2;

Tying It All Together

Let’s finish up by returning to our traffic light example. The example was
introduced in Fig. 1.3 to show a typical microprocessor application. By the time
we were into Chap. 4, we knew enough to be able to design an 8086 system that
would control the traffic light. This was shown in Fig. 4.16. Now we can write a
program that can be used in that system.

The traffic light is situated on a main highway at the intersection with a
small cross street. The light is to behave as follows. It will normally be green for
the highway and red for the cross street. After the number of cars lined up in the
cross street exceeds 5, the light will become red on the highway and blinking
yellow on the cross street. This will continue until there are no more cars left in
the cross street.

The system shown in Fig. 4.19 has the traffic light connected as a
memory-mapped output port at memory location 1000 (hexadecimal). Let us

184

The 8086 Primer

assume that the individual bulbs in the light are wired up so they correspond to
the bits in location 1000 as follows:

(leftmost bit)

(rightmost bit)

Red bulb on main highway
Yellow bulb on main highway
Green bulb on main highway
Left-turn bulb on main highway
Red bulb on cross street
Yellow bulb on cross street
Green bulb on cross street
Left-turn bulb on cross street

S =N Wh o

The system also has an input port (not shown in Fig. 4.19), which tells the

processor how many cars are waiting in the cross street. This port receives its
information from sensors (along with some counting circuitry) buried in the
roadway. Let us assume that this input is connected as port 50.

The following PL/M-86 program will cause the traffic light to behave the

way we specified:

TRAFFICS$LIGHT:

DO;
DECLARE LIGHTS BYTE AT (1000H); - /*memory-mapped output */
DELCARE CAR$COUNT LITERALLY 'INPUT(50)"; /* input */
DECLARE MAINSRED LITERALLY '80H'; /* names for individual bulbs */
DECLARE MAINSYELLOW LITERALLY '40H";
DECLARE MAIN$SGREEN LITERALLY '20H";
DECLARE MAINSLEFT$TURN LITERALLY "10H!;
DECLARE CROSS$RED LITERALLY '08H';
DECLARE CROSSS$YELLOW LITERALLY '04H';
DECLARE CROSS$GREEN LITERALLY '02H";
DECLARE CROSS$LEFT$TURN LITERALLY '01H';

DELAY:
PROCEDURE (X); /* causes an X second delay */
DECLARE X BYTE;
END DELAY;
START:
LIGHTS = MAINSGREEN +CROSS$RED; /* normal setting */
IF CAR$COUNT >5 THEN /* too many cars waiting */
DO; /* let them go through */

LIGHTS = MAINSYELLOW +CROSS$RED; /* stop highway */

CALL DELAY(3);
DO WHILE CARSCOUNT >0: -/* start cross street */

8086 High-Level-Language Programming 185

LIGHTS = MAINSRED

CALL DELAY(1);

LIGHTS = MAINSRED +CROSSSYELLOW;
CALL DELAY (1);

END;
END;
GO TO START; /* and repeat the cycle */
END; /* of program */

Let’s add a degree of complexity to the system. This time we’ll make all
the traffic lights in the town become blinking red (in all directions) whenever a
fire alarm is sounded. Assume we have two signals that are sent from the
firehouse to every traffic light. One of these signals indicates the alarm has been
sounded; the other indicates the all clear situation.

We’ll connect the alarm signal to the INTR pin on our processor and
incorperate some circuitry to convey the corresponding interrupt type (say it’s
10) to the processor at the appropriate time. The all clear signal we’ll connect as
input port 51, so that all 1’s (true) are read from this port when the emergency is
over and all 0’s (false) otherwise. And we’ll include the following procedure
declaration in our program:

FIRE$SALARM:
PROCEDURE INTERRUPT 10;
DECLARE SAVED$LIGHTS BYTE;
DECLARE ALL$CLEAR LITERALLY 'INPUT(51)";

SAVEDSLIGHTS = LIGHTS; /* we need to restore these later */
DO WHILE NOT ALL$CLEAR; /* blinking red */
LIGHTS = 0;

CALL DELAY (1);
LIGHTS = MAINSRED +CROSS$RED;
CALL DELAY (1);

END;
LIGHTS = SAVEDS$LIGHTS; /* restore old settings */
END FIRE$SALARM;

We’ll stop the design here. But you might want to try modifying the
program to do more elaborate things, such as controlling the northbound lights
independently of the southbound lights, controlling the left turn arrow, varying
the delays to accommodate for peak hours, and anything else you can think of.

In Conclusion

This chapter was not meant to be a compendium of all the features and
rules in PL/M-86.(the Intel PL/M-86 Programming Manual does that very well).
Instead, it attempted to present most of the features of the language in a form that
was easy to digest and conveyed enough information so that you could write
meaningful programs. We didn’t cover many of the fine details (like *‘thou shalt
not declare interrupt procedures except on the outermost level of the program’’),
which, although important, really get in the way when you re trying to learn the
language. We also didn’t present some of the dispensable features (like type

186 The 8086 Primer

ADDRESS for compatibility with an earlier version of PL/M) so that attention
could be focused on the more useful features.

Finally, if you’ve been keeping track of all the facilities provided by the
8086 and comparing them to the things you can write in PL/M-86, you’ve
probably discovered that there’s no way to generate the string instructions, the
shift or rotate instructions, or the LOCK prefix. These facilities, although not a
part of the PL/M-86 language, are available by calling built-in procedures (pro-
cedures that the compiler knows about and you didn’t have to write). A descrip-
tion of the built-in procedures can be found in the Intel PL/M-86 Programming
Manual and will not be presented here.

References

The earliest document describing the 8086 was an Intel internal publication
(1) describing the 8086 architectural specification, which went through several
revisions during 1976 and 1977 until it arrived in its final form (2). The first
published article, which in effect announced the processor to the world, appeared
in a trade magazine in February of 1978 (3). The first technical article appeared
in June of that year and was published in the IEEE Computer magazine (4). The
next month marked the first shipments of 8086°s to customers and the publication
of the first official 8086 manual (5). This was followed by other Intel publica-
tions, which describe the 8086 assembly language (6) and the PL/M-86 language
(7). Most recently, a description of the architectural evolution that traces the
features of the 8086 back to the earliest microprocessors has been published (8).

1.

»

00 1 O\ W

S.P. Morse, ‘‘Intel 8086 Instruction Set,’’ Intel internal documentation,
August 13, 1976 (Revision 0), October 22, 1976 (Revision 1), February
18, 1977 (Revision 2).

S.P. Morse, W.B. Pohiman, B.W. Ravenel, ‘‘Intel 8086 Architectural
Specification,’’ Intel internal documentation, January 12, 1978.

. B.J. Katz, S.P. Morse, W.B. Pohlman, B.W. Ravenel, ‘‘8086 Mi-

crocomputer Bridges the Gaps between 8- and 16-bit Designs,”’ Elec-
tronics, February 16, 1978.

. S.P. Morse, W.B. Pohlman, B.W. Ravenel, ‘‘The Intel 8086 Mi-

croprocessor: A 16-bit Evolution of the 8080, Computer, June 1978.

. MCS-86 User's Manual, Intel Corp., July 1978.

. MCS-86 Assembly Language Reference Manual, Intel Corp., 1978.

. PL/IM-86 Programming Manual, Intel Corp, 1978

. S.P. Morse, B.W. Ravenel, S. Mazor, W.B. Pohlman, ‘‘Intel

Microprocessors—8008 to 8086, Computer Structures, Volume 2,
McGraw-Hill, 1980.

187

Appendix A

DATA TRANSFER

MOV = Move:

Register/memory to/from register
Immediate to register/memory
Immediate to register

Memery to accumulator
Accumulator to memory
Register/memory to segment register
Segment register to register/memory

PUSH = Push:
Register/memory
Register

Segment register

POP = Pop:
Register/memory
Register
Segment register

XCHG = Exchange:
Register/memory with register
Register with accumulator

IN=Input from:
Fixed port
Variable port

QUT = Qutput to:

Fixed port

Variable port
XLAT=Translate byte to AL
LEA=Load EA to register
LD$=Load pointer to DS
LES=Load pointerto ES
LAHF=Load AH with flags
SAHF =Store AH into flags
PUSHF=Push flags
POPF=Pop flags

8086
Instruction Set Summary

Reprinted by Permission INTEL Corp.

188

76543210 76543210 76543210 76543210
100010d w|mod reg r/m

1100011 w][md000 r/m data data if w-1_|
1011w reg data dataifw 1
1010000w addr-low addr-high
1010001 w addr-low addr-high
10001110 [modOreg v/m
10001100 [modOreg r/m
11111111 [mod 110 t/m |
01010 reg

1000reg 110

10001111 [mod0o0 r/m |

01011 reg

000reg111

100001 1w mod reg rlmJ

10010 reg

1110010w port]
1110110w

1110011w port |
111011 1w

11010111

1000110 [mod reg r/m

11000101 |mod reg r/m

11000100 [mod reg r/m
10011111

10011110

10011100

10011101

Appendix A
ARITHMETIC
ADD = Add:
Reg./memory with register toeither |000000d w|mod reg r/m
Immediate to register/memory 100000s w([mod0OO r/m data data if s:w=01
1 diate to 0000010 w data data if w=1
ADC = Add with carry:
Reg./memory with register to either [000100d wmod reg r/m
Immediate to register/memory 100000sw|{mod0 10 r/m data data if s:w=01J
| iate to 0001010w data data if w=1
INC = Increment:
Register/memory 111111 1w][mod000 r/m |
Register 01000 reg
AAA=ASCH adjust for add 00110111
DAA=Decimal adjust for add 00100111
SUB = Subtract:
Reg./memory and register to either 001010dw {mod reg r/m
immediate from register/memory 100000sw|mod1 01t r/m data data it s:w=01]
I diate from 0010110w data data if w=1
$88 = Subtract with berrew
Reg./memory and register to either 000110dw mod reg rlﬁl
Immediate from register/memory 100000 sw|mod0 11 r/m data data if s:w=01
[from 0001110w data data it w=1
DEC - Decrement: 76543210 76543210 76543210 765432180
Register/memory 111111 1w|med001 /m |
Register 01001 reg
NEB=Change sign 111101 1w mog011 r/m |
CMP - Compare:
Register/memory and register 001110dw mod reg r/m
immediate with register/memory 100000sw|mod111 r/m data data if s'w=01]
Immediate with accumulator 0011110w data data if w1
AAS=ASCII adjust for subtract 00111111
DAS-Decimal adjust for subtract: 00101111
MUL=Multiply (unsigned) 111101 1w |mod100 r/m
IMUL=Integer multiply (signed) 111101 1w mod1 0t t/m
AAM-ASCII adjust for multiply 11010100(00001010
Div=Divide (unsigned) 111101 1w mod110 r/m
IDiV=Integer divide (signed) 11110t twimodi 11 r/m
AAD=ASCII adjust for divide 11010101 00001010
CBW=Convert byte to word 10011000
Cwd-Convert word to double word 10011001
LOGIC
NOT =Invert 1111011 wi{mod010 r/m
SHL/SAL-Shift logical/arithmetic left | 11.0100v w [mod100 r/m
SHR=Shift logical right 110100vw|/mod1 01 r/m
SAR=Shift arithmetic right 110100vw | modt 11 r/m
ROL-Rotate left 110100vw|med000 r/m
ROR-Rotate right 110100vw|med001 r/m
RCL-Rotate through carry flag left 110100vw|mod0 10 r/m
RCA=Rotate through carry right 110100vwimodO11 r/m

189

The 8086 Primer

AND = And:
Reg./memory and register to either 001000dw [mod reg r/m
Immediate to register/memory 1000000w [mod100 r/m data data it w=1]
Immediate to accumulator 0010010w data data if w=1
TEST = And function to flags, no result:
Register/memory and register 1000010w imod reg r/m
immediate data and register/memory |1 111011 w [mod0 00 r/m data data if wil
I diate data and 1010100w data data if w=1
OR = Or:
Reg./memory and register to either 000010dw |mod reg r/m
Immediate to register/memory 1000000w |mod0 01 r/m data data if w:l—l
1 diate to | 0000110w data data it w=1
XOR = Exclusive or:
Reg./memory and register to either 001100dw [mod reg r/m
Immediate to register/memory 1000000w mod110 r/m data data if w=1 J
Immediate to accumulator 0011010w data data it w=1
STRING MANIPULATION
REP=Repeat 11110012
MOVS=Move byte/word 1010010w
CMPS=Compare byte/word 101001 1w
SCAS=Scan byte/word 101011 1w
LODS=Load byte/wd to AL/AX 1010110w
STDS=Stor byte/wd from AL/A 1010101 w
CONTROL TRANSFER
CALL = Cali: 76543210 76543210 76543210
Direct within segment 11101000 disp-low disp-high |
Indirect within segment 11111111 {mod010 r/im
Direct intersegment 10011010 offset-low oftset-high
seg-low seg-high
Indirect intersegment 11111111 |mod0 11 r/m
JMP = Unconditional Jump:
Direct within segment 11101001 disp-low disp-high
Direct within segment-short 11101011 disp
Indirect within segment 11111111 imod1.00 r/m
Direct intersegment 11101010 offset-low oftset-high
seg-low seg-high
Indirect intersegment 11111111 [mod 101 r/m

RET - Return from CALL:
Within segment
Within seg. adding immed to SP
intersegment
adding i iate to SP

JE/JZ=Jump on equal/zero
JL/JNGE= Jump on less/not greater

JLE/JNG-=, Jump un less or equal/not
reate

Jl/JIIAEgJump (lm below/not above

JBE/JNA= Jumgoon betow or equat/
not al

JP/JPE=Jump on parity/parity even

J0=Jump on overflow

J8=Jump on sign

JME/JINZ=4ump on not equat/not zero
JNL/JGE=Jump on not less/greater

or equal
JNLE/JB=Jump on not less or equal/
greater

JNB/JAE-Jump on not below/above

or equal
JNBE/JA=Jump on not below or
equal/above
JNP/JPO=Jump on not par/par odd

JNO=Jump on not everflow
JNS=Jump on not sign
t0OOP- Loop CX times

LOOPZ/LOOPE=Loop while zero/equal

LOOPNZ/LOOPNE-Loop while not
zero/equal

JCXZ-Jump on CX zero

INT - Interrupt

Type specified

Type 3

INTO=Interrupt on overflow
IRET =interrupt return

PROCESSOR CONTROL
CLC=Clear carry
CMC-Complement carry
$TC-Set carry

CLD=Clear direction
8TD-Set direction
CLI=Clear interrupt
ST)-Set interrupt
HLT-Halt

WAIT=Wait

ESC=Escape (to external device)
LOCK=Bus lock prefix

Appendix A

11000011

11000010 data-low data-high |}
11001011

11001010 data-low data-high |
01110100 disp
01111100 disp
01111110 disp
01110010 disp
01110110 disp
01111010 disp
011106000 disp
01111000 disp
01110101 disp
01111101 disp
01111111 disp
76543210 76543210
01110011 disp
01110111 disp
01111011 disp
01110001 disp
01111601 disp
11100010 disp
11100001 disp
11100000 disp
11100011 disp
11001101 type |
11001100

11001110

11001111

11111000

11110101

11111001

11111100

11111101

11111010

11111011

11110100

10011011

11011 x x x[modx x x r/m]
11110000

191

192

The 8086 Primer

Footnotes:

AL = 8-bit accumulator

AX = 16-bit accumulator

CX = Count register

DS = Data segment

ES = Extra segment

Above/below refers to unsigned value.

Greater = more positive;

Less = less positive (more negative) signed values
ifd = 1 then “to” reg; it d = 0 then “from’" reg

if w = 1 then word instruction; if w = 0 then byte instruction

it mod = 11 then r/m is treated as a REG field

if mod = 00 then DISP = 0*, disp-low and disp-high are absent
it mod = 01 then DISP = disp-low sign-extended to 16-bits, disp-high is absent
if moc = 10 then DISP = disp-high: disp-low

if r/m = 000 then EA = (BX) + (Si) + DISP

if r/m = 001 then EA = (BX) + (DI) + DISP

it r/m = 010 then EA = (BP) + (SI) + DISP

if r/m = 011 then EA = (BP) + (DI) + DISP

if r/m = 100 then EA = (SI) + DISP

if r/m = 101 then EA = (DI) + DISP

if r/m = 110 then EA = (BP) + DISP*

if r/m = 111 then EA = (BX) + DISP

DISP follows 2nd byte of instruction (before oata if required)

*except if mod = 00 and r/m = 110 then EA = disp-high: disp-low.

it s:w =01 then 16 bits of immediate data form the operand.

it s:w =11 then an immediate data byte is sign extended to
form the 16-bit operand.

it v=0then “count’ =1; if v=1 then ""count’ in (CL)

x =don't care

z is used for string primitives for comparison with ZF FLAG.

SEGMENT OVERRIDE PREFIX
001reg?10

REG is assigned according to the following table:

16Bit w - 1) 88itlw - 0) Segment
000 AX 000 AL 00 ES
001 CX 001 CL 01 CS
010 DX 010 DL 10 SS
011 BX 011 BL 11 DS
100 SP 100 AH

101 BP 101 CH

10 Si 110 DH

1m0l 111 BH

Instructions which reference the flag register file as a 16-bit object use the symbol FLAGS to
represent the file:

FLAGS = X:X:X:X:(OF):(DF):(IF):(TF):(SF):(ZF):X:(AF): X:(PF):X:(CF)

Appendix B

8086
Opcode Space

Most 8086 instructions contain their opcode entirely in the first byte of the
instruction. However, there are some instructions that spill the opcode over into
certain bits of the following byte. The portion of the opcode that is contained in
the first byte is called the primary opcode, and the portion that spills over (if any)
is called the secondary opcode. This appendix shows how the 8086 instructions
are laid out in a matrix called the opcode space.

The matrix entries correspond to the instruction opcodes. Each entry con-
tains the mnemonic of the instruction having that opcode as well as the settings of
any fields that distinguish the opcode from other opcodes that have the same
instruction mnemonic. For example, the primary opcodes AC and AD both
correspond to the LODS (load string) mnemonic. The primary opcode space
entry for AD (intersection of row A and column D) contains LODS w, indicating
that this instruction loads a word (w field is 1). The entry for AC is simply
LODS, indicating this is a byte load (w field is 0).

Each entry in the matrix specifies not only the instruction but also any
arguments used by the instruction. The following notation is used for specifying
the arguments:

1. r/m means one of the arguments is specified by a mod and r/m field.

2. reg means one of the arguments is specified by a reg field.

3. imm means one of the arguments is specified as immediate data.

4. mem means the memory address of one of the arguments is specified
directly.

5. if a register name is given explicitly, that register is one of the argu-
ments.

6. if there are two arguments, the destination argument appears first.

As an example, consider the instruction whose opcode is 29. The entry in
the primary opcode space at the intersection of row 2 and column 9 tells us that
the instruction is SUB (subtract). The w field is set indicating that it is a word

193

194 The 8086 Primer

subtraction. Furthermore, the destination operand is specified by the r/m (and
mod) field, and the source operand is specified by the reg field. Thus the
instruction will subtract the contents of the word operand specified by the reg
field from the contents of the word operand specified by the mod and r/m fields
and place the result back into the operand specified by the mod and r/m fields.

To illustrate the use of a secondary opcode, consider the instruction whose
primary opcode is F7. The primary opcode space contains *** at the intersection
of row F and column 7, indicating the existence of a secondary opcode. This

1. Primary Opcode Space

0 1 2 3 4 5 6 7

0] ADD ADDw | ADDd JADDdw} ADD ADD w PUSH POP
r/m,reg r/mreg | reg,//m | reg,r/m | AL,imm] AX,imm ES ES

1] ADC ADCw | ADCd |ADCdw] ADC ADCw | PUSH POP
rimyreg | r/mreg | reg,/m | reg,r/m | AL,imm | AX,imm SS SS

2| AND AND w ANDd JANDdw] AND AND w |SEGMENT| DAA
r/myreg | r/im,reg reg,r/m | reg,r/m | AL,imm | AX,imm ES

3] XOR XORw] XORd | XORdw] XOR XOR w | SEGMENT] AAA
r/mreg r/myreg | reg,//m | reg.r/m | ALimm | AX,imm SS

4 INC INC INC INC INC INC INC INC
AX CX DX BX SP . BP Sl Di

51 PUSH PUSH PUSH PUSH PUSH PUSH PUSH PUSH
AX CX DX BX SP BP St DI

7 JO JNO | UB/UNAE JUNBIUAE] JEWZ [JUNE/JINZ | UBE/NA | UNBEJA

8 tw s “*sw | TEST TESTw | XCHG | XCHGw
r/m,reg r/mreg | rmyreg] r/m,reg

9] XCHG | XCHG XCHG | XCHG | XCHG XCHG] XCHG | XCHG
AX,AX | CX,AX DX,AX | BX,AX | SP.AX BP,AX SIL,AX DI,AX

Al MOV MOV w MOV MOV w MOVS | MOVS w| CMPS | CMPS w
AL,mem] AX,mem | mem,AL | mem,AX

Bl MOV MOV MOV MOV MOV MOV MOV MOV
AL,imm } CL,imm | DL,imm] BL,ijmm | AH,imm | CH,imm] DH,imm | BH,imm

Cc RET RET LES LDS MOV MOV w

intra + intra reg,r//m reg,r/m { r/m,imm{ r/m,imm
3] B =t w oy ~vw]| AAM AAD XLAT
E JLOOPNZ/} LOOPZ/ LOOP JCXZ IN IN w ouT OUT w

LOOPNE | LOOPE AL,port | AX,port { port, AL | port,AX

Fl LoCK REP/ REPE/ HLT cMC - w

REPNE/| REPZ

REPNZ

) W

*** means see Secondary Opcode Space

195

primary opcode space also contains a w, indicating that whatever the instruction
does, it does it on words. The secondary opcode space entry for F7 is found by
looking at the row labeled F7. There are seven different instructions that all have
the primary opcode F7. Suppose that our instruction contained a 3 in the opcode
portion of its second byte. The secondary opcode space entry for row F7 and
column 3 is NEG r/m. So the instruction will negate the word specified by the
mod and r/m fields.

Primary Opcode Space (continued)

8 9 A B C D E F
0 OR ORw ORd ORdw OR OR w PUSH
r/mreg | rimreg | reg,r/m | reg,r/m | AL,imm | AX.imm Cs
1] sBB SBBw | SBBd |sSBBdw] SBB SBBw | PUSH POP
rimreg | rimreg | reg,rim | reg,/m | AL,imm | AX,imm DS DS

2] SuB SUBw | SUBd |SuBdw}| SuB SUB w [SEGMENT| DAS
rim,reg | r/myreg | regs/m | reg,/m | ALjimm | AX,imm Cs

3] CMP | CMPw | CMPd |[CMPdw| CMP CMP w |seGMeNnT] AAS
r/m,reg | r/m,reg reg,r/m | reg,r/m | ALjimm | AX,imm DS

4| DEC DEC DEC DEC DEC DEC DEC DEC

AX cX DX BX SP BP Si)
s| pop | PopP pop | pop | Pop | Pop | Pop | PoP
AX CX DX BX SP BP S| DI
6
71 s INS | JPUPE | INPUPO] JLIUNGE | UNLJGE | JLE/UNG [UNLE/IG
8| mov | movw| Mova [MOvaw| Mov Lea | mov

rmyreg | rimreg | reg,rm } reg/m | rmseg | reg,im | seg./m

9] CBW CWD CALL WAIT | PUSHF POPF SAHF LAHF
inter

Al TEST }TESTw STOS | STOSw| LODS | LODSw| SCAS | SCASw
AL,imm | AX,imm

Bl MOV MOV MOV MOV MOV MOV MOV MOV
AX,imm | CX,imm | DX,imm | BX,imm | SP,imm | BP,imm | Slimm Dlimm

C RET RET INT INT INTO IRET
| inter + inter type 3

D]l Esc ESC ESC ESC ESC ESC ESC ESC
0 1 2 3 4 5 6 7

E| CALL JMP JMP JMP IN IN w ouT OuUT w
intra intra inter short AL,var AX,var | varAL var,AX
Fl cLC STC CLI STl CLD STD *w

*xn

means see Secondary Opcode Space

196

The 8086 Primer

2. Secondary Opcode Space (opcode in second byte)

0 1 2 3 4 5 6 7
80-83{ ADD OR ADC SBB AND suB XOR CMP
r/m,imm § r/m,imm |} r/m,imm | r//m,imm | r/m,imm } r/m,imm | r/m,imm | r/m,imm
8F POP
r/m
D0-D3] ROL ROR RCL RCR |SHL/SALY SHR RAR
r/m r/m r/m r/m r/m r/m r/m
F6-F7] TEST NOT NEG MUL IMUL DIV IDIV
r/m,imm r’'m r/m r’m r/m r/m r/m
FE INC DEC CALL CALL JMP JMP PUSH
r/m r/m intra inter intra inter r/m
FF INCw | DECw
r/m r/m

Appendix C
ASCIl Codes

1. Non Printable ASCIt Characters

hex abrev intent hex abrev intent

00 NUL null or time fill 10 DLE data line escape
01 SOH start of heading 11 DC1 device control 1 (X-ON)
02 STX start of text 12 DC2 device control 2 (TAPE)
03 ETX end of text 13 DC3 device control 3 (X-OFF)
04 EOT end of transmission 14 DC4 device control 4 (TAPE)
05 ENQ enquiry 15 NAK negative acknowledge
06 ACK acknowledge 16 SYN synchronous idle
07 BEL bell 17 ETB end of transmission blocks
08 BS backspace 18 CAN cancel
09 HT horizontal tabulation 19 EM end of medium
OA LF line feed 1A SUB substitute
0B VT vertical tabulation 1B ESC escape
0C FF form feed 1C FS file separator
0D CR carriage return 1D GS group separator
OE SO shift out 1E RS record separator
OF SI shift in 1F US unit separator

7F DEL delete

2. Printable ASClHI characters

hex charjhex char | hex char| hex char| hex char] hex char
20 30 0 40 @} 5 P 60 " 70 p
21 ! 31 1 41 A 51 Q 61 a 71

22 " 32 2 42 B 52 R 62 b 72 r

23 # 33 3 43 C 53 S 63 ¢ 73 s
24 § 34 4 44 D 54 T 64 d 74t

25 %[3 5 45 E 5 U 65 e 75 u

26 & 36 6 46 F 56 V 66 f 76 v

27 37 7 47 G | 57 W 67 g 7 w
28 38 8 48 H 58 X 68 h 78 x

29) 39 9 49 | 5 Y 69 i 79 vy

2A 3A 4A J 5A Z 6A 7A 2z

2B+ 3B 4B K | 5B | 6B k 7B {

2C 3C < 4C L J5C 6C | 7C

2b -] 3 = 4D M | 5D) 6D m 7}

2t - 3E > 4E N | 5E - 6E n 7E -

2F / 3F 2 4F O | 5F 6F o

197

Index

AAA, AAD, AAM, AAS instructions,
56-60

Above, 79

ACCUMULATOR register, 17-18,

36-38, 49, 51-52, 55, 57-58, 67-69

See also Registers
Activation record, 31
ADC, ADD instructions, 46-47
Addition and subtraction
of binary numbers, 44-49, 51, 82
of packed decimal numbers, 53-55
setting of flags, 93
of unpacked decimal numbers, 56
Address
bus, 97-100
decoding, 104
latching, 100-101, 102
of a memory location, 3, 12,
15-16, 121
modes, 11, 21-31, 145-147
AF flag, 54-55
See also Flags
AH register. See AX register
AL register. See AX register
ALE pin, 100, 102, 106, 118
Analytic operators, 131, 135-136
AND
instruction, 61-62, 130
operator, 129-130
Architecture, 11
Array, 29-30, 167-168
Arithmetic operators
in ASM-86, 129
in PL/M-86, 157-159
ASCII, 6-7, 56, 67, 69, 128, 148-149,
156, 197
ASM-86, 121-150
Assembler, 120
Assembly language, 120-121, 151-153
Assignment statement, 160-161
ASSUME statement, 122-123, 124,
138-141
AUXILIARY CARRY flag, 54-55
See also Flags
AX register, 17-18, 36-38, 49, 51-52,
55, 57-58, 67-69
See also Registers

199

Backwords, 13, 25, 27
BASE POINTER register, 19, 31
See also Registers
BAGSE register, 17-18, 23, 30, 37
See also Registers
Base registers, 23
Based variable, 30, 170-171, 175
BCD. See Decimal arithmetic
Below, 79
BH register. See BX register
BHE pin, 107-108
Bidirectional amplification, 101
Binary-coded decimal.
See Decimal arithmetic
BL register. See BX register
Block, 162-165, 178-180
Block structure, 31, 178-180
Boolean, 61-62, 95-96
BP register, 19, 31
See also Registers
Breakpoint, 85
Bus, 97-100
controller, 118
BX register, 17-18, 23, 30, 37
See also Registers
Byte, 12
BYTE type
in ASM-86, 134-135
in PL/M-86, 158

CALL
instruction, 72-77, 142-143
statement, 174
CARRY flag, 44, 46, 54-55, 63-64, 88
See also Flags
CASE statement, 162-163
See also DO blocks
CBW instruction, 52
CF flag, 44, 46, 54-55, 63-64, 88
See also Flags
Character representation, 6-7
CH register. See CX register
Chip, 8
Chips
2142 RAM, 104-106
2716 ROM, 103-104

200 The 8086 Primer

Chips (cont.)
8086 processor, 11-118
8259A interrupt controller, 115-117
8282 latch, 100-101, 102, 110
8284 clock generator, 102, 118
8286 transceiver, 101
8288 bus controller, 118
CL register. See CX register
CLC, CLD, CLI instructions, 88
Clock generator and clock pulses,
102,118
CMC instruction, 88
CMP instruction, 47-49, 77
CMPS instruction, 68-69, 148
Code segment, 8, 15, 20, 74-75
CODE SEGMENT register, 15, 20-21,
34,73-76, 81-85, 87, 138-141
See also Registers
Codes
ASCII, 197
BCD, 53
Gray, 71-72, 148
two-out-of-five, 38
Comment
in ASM-86, 128, 132
in PL/M-86, 156-157
Compiler, 120
Complementing, 62
Conditional jumps, 49, 70, 77-80
Constants
in ASM-86, 126-128
in PL/M-86, 156, 158, 169
Contents of a memory location, 3, 119
Control
flags. See Flags
signals, 97-100
COUNT register, 17-18, 64, 65-72
See also Registers
CS register, 15, 20-21, 34, 73-76,
81-85, 87, 138-141
See also Registers
CWD instruction, 52
CX register, 17-18, 64, 65-72
See also Registers

d field, 26
DAA, DAS instructions, 55-56
Data
amplification, 100-101
area, 2
bus, 97-100
-definition statements, 132-135
formats, 3-7
segment, 8, 15, 19, 20, 23, 65
DATA register, 17-18, 37, 49, 52
See also Registers

DATA SEGMENT register, 15, 20-21,
40, 138-141
See also Registers
DB, DD statements, 132
Debugger, 85-87, 96
DEC instruction, 47-48, 91
Decimal arithmetic
on packed numbers, 52-55
setting of flags, 95
on unpacked numbers, 55-60, 62, 149
Declarative statements, 154, 160,
165-172, 182
DECLARE statement, 154
Delimiters
in ASM-86, 126
in PL/M-86, 155-156
DEN pin, 101, 118
DESTINATION INDEX register,
19, 23,29, 65-72
See also Registers
DF flag, 67, 69, 88
See also Flags
DH register. See DX register
DI register, 19, 23, 29, 65-72
See also Registers
Direct memory-addressing mode,
25, 145
DIRECTION flag, 67, 69, 88
See also Flags
Directive statements; 131-143
DISABLE statement, 165
Displacement, 23
DIV instruction, 50-51
Division. See Multiplication and division
DL register. See DX register
DO blocks, 162-165, 178-180
DO statement, 154, 162, 178
Doubleword, 132
DS register, 15, 20-21, 40, 138-141
See also Registers
DTR pin, 101, 118
DW statement, 132
DWORD type, 135
DX register, 17-18, 37, 49, 52
See also Registers

Element of an array, 167-168
ENABLE statement, 165
END statement

in ASM-86, 125, 143-145

in PL/M-86, 154,175

See also DO blocks
ENDP statement, 142-143
ENDS statement, 125, 138, 143
EQ operator, 130
EQU statement, 132

ES register, 15, 20-21, 40, 138-141
See also Registers
ESC instruction, 89-90
Executable statements, 154, 160-165
Expression
in ASM-86, 128-131
in PL/M-86, 157-159
EXTERNAL specification, 182-183
Extra segment, 15, 20, 67
EXTRA SEGMENT register, 15, 20-21,
40, 138-141
See also Registers

FAR type, 135, 137, 142
Flags, 3, 21, 40-43, 81, 84, 87, 93-96
AUXILIARY CARRY (AF), 54-55
CARRY (CF), 44, 46, 54-55,
63-64, 88
connotation of, 44-45
DIRECTION (DF), 67, 69, 88
INTERRUPT ENABLE (IF),
81-82, 85, 87, 88, 114
OVERFLOW (OF), 44, 83
with respect to conditional jumps,
47-49, 62, 77-80
TRAP (TF), 85-86
ZERO (ZF), 68-69, 71
Floating point, 89-90
Floating-point constant, 156, 158

GE operator, 130
General registers, 17, 18

See also Registers
Generations of computers, 8-9
GOTO statement, 163-164
Gray code, 71-72, 148
Greater than, 79
GT operator, 130

HALT statement, 165

Halving, 62-64

High-level language, 28-31, 120,
151-153

‘Hexadecimal mumbers, 4

HLT instruction, 84, 143

IC (integrated circuit), 8
Identifier

in ASM-86, 126

in PL/M-86, 155
IDIV instruction, 50-51

Index

201

1F
‘flag, 81-82, 85, 87, 88, 114
See also Flags
statement, 161-162, 163
Immediate operand, 27, 145
IMUL instruction, 50-51
IN instruction, 37-38

INC instruction, 47

Index registers, 19, 23, 29, 65-72
See also Registers
Indirect memory-addressing mode,
23, 146-147
Initial value, 133
Input/output, 1, 15-16, 37, 110, 118,
180-181
Instruction
formats, 3
mnemonics, 121, 130, 144, 188-194
statements, 131, 144-150
INSTRUCTION POINTER register,
17, 20, 34, 73-76, 81-85, 87, 92-93
See also Registers
INT instruction, 84-85
INTA pin, 114,118
INTEGER type, 158
Integrated circuit, 8
Interrupt
controller, 115-117
routine, 81, 84, 87, 176
type, 81 .
INTERRUPT ENABLE flag,
81-82, 85,87,88,114
See also Flags
Interrupts, 80-88, 92, 96, 114-117,
134, 177
Intersegment, 73-76, 133, 135, 138,
142-143
INTO instruction, §3-84
INTR pin, 81-82, 87,114, 185
Intrasegment, 73-76, 133, 135, 138,
142-143
IP register, 17, 20, 34, 73-76, 81-85,
87, 92-93
See also Registers
IRET instruction, 84,87
Iterative-DO statement, 164
See also DO blocks

Jump instructions
JCXZ, 70-71
IMP, 72-77
J— (all other jump instructions),
78-80

Label, 131, 144, 179-180
LAHEF instruction, 42-43

202 The 8086 Primer

Latch, 100-101, 102, 110
LDS instruction, 39-41
LE operator, 130
LEA instruction, 39-40
LENGTH operator, 136
LES instruction, 39-41
Less than, 79
Lexicographical ordering, 69
Linking, 120, 183
LITERALLY, 171-172
LOCK

pin, 91,92, 118

prefix, 91-92, 186

See also Prefixes
LODS instruction, 68-69, 143
Logical, 60-64, 95-96
Logical operators

in ASM-86, 129-130

in PL/M-86, 159
LOOP, LOOPE, LOOPNE, LOOPNZ,

LOOPZ instructions, 70-71

LT operator, 130

M/IO pin, 110, 118
Machine language, 119
Macro, 172
Main program, 181
Masking, 62
Maximum mode system, 118
Member of a structure, 168
Memory, 3, 12-13, 98, 103-110
accessing, 13-14, 106-109, 141-142
-mapped input/output, 110, 118, 169
segmentation, 8, 13-16, 19-20, 23-24,
25, 40-41, 122, 138-142
utilization, 8
Memory locations
in ASM-86, 134-135
in PL/M-86, 169-171
Memory-address operand,
128-129, 131, 135, 135-137
Microprocessor and microcomputer,
8, 97
Minimum mode system, 118
MN/MX pin, 118
Mod field, 22
MOD operator
in ASM-86, 129
in PLM-86, 158
Module 181-183
MOV instruction, 33-34, 87-88
MOYVS instruction, 66, 68, 147-148
MUL instruction, 50-51
Multiple precision, 45-46, 55, 93

Multiplication and division
of binary numbers, 49-52, 62-64
of packed decimal numbers, 55
setting of flags, 95
of unpacked decimal numbers,
57-60, 62
by zero (division), 82
Multiprocessing, 90-91, 92

NE operator, 130
NEAR type, 135, 142-143
NEG instruction, 47-48
Negative numbers, 4-6, 128, 157
NIL mnemonic, 144
NMI pin, 81-82, 114
NOP mnemonic, 144
NOT .
instruction, 61, 130
operator, 129-130
Number systems, 3-4
Numeric operand, 128

Object code, 119-121
OF flag, 44, 83
See also Flags
Offset address, 15, 23, 25, 40, 65-72, 129
OFFSET operator, 135, 148
Operand-addressing modes, 11, 21-31,
145-147
Opcode, 22
Operands
in ASM-86 128-129
destination, 26
multiple, 26-28
in PL/M-86, 157
single, 21-25
source, 26
QOperators
in ASM-86, 129-131
in PL/M-86, 157-159
OR
instruction, 61, 130
operator, 129-130
ORG statement, 142
OUT instruction, 37-38
Output. See Input/output
OVERFLOW flag, 44, 83
See also Flags
Overlapped move, 66-67, 149

Parameter, 31, 40, 76-77, 174-175
PARITY flag. See Flags
PF flag. See Flags

Pins on 8086
ALE, 100, 102, 106, 118
BHE, 107-108
DEN, 101,118
DT/R, 101, 118
INTA, 114, 118
INTR, 81-82, 87, 114, 185
LOCK,91,92,118
M/IO, 110,118
MN/MX, 118
NMI, 81-82, 114
RD, 106, 118
S0-S2, 118
TEST, 90
WR, 106-107, 110, 118
PL/M-86, 121, 152-186
Pointer, 30, 40, 170
Pointer registers, 19
See also Registers
POINTER type, 170
Polling, 81
POP instruction, 34, 36
POPF instruction, 43
Popping. See Stack
Port, 3, 14, 37,110
See also Input/output
Position-independent code, 74-76, 77
Power failure, 81
Prefixes, 92-93, 145
LOCK prefix, 91-92, 186
repeat prefix, 65-69
segment-override prefix, 20-21, 27,
124, 138-141
Primitives. See String operations
PROC statement, 142-143
Procedure, 7, 73, 142-143, 172-178
parameter, 31, 40, 76-77, 174-175
reentrant, 31, 176-177, 179-180
PROCEDURE statement in PL/M-86,
172,178
Procedure-definition statements in
ASM-86 142-143
Processor, 11
Program area, 2
PTR operator, 136-137, 147
PUBLIC specification, 182-183
PURGE statement, 132
PUSH instruction, 34, 36
PUSHF instruction, 43, 84
Pushing. See Stack

r/m field, 23

RAM memory, 3, 103, 104-106
RCL, RCR instructions, 63-64
RD pin, 106, 118

REAL type, 158

Index

203

Record, 30
See also Structure
Recursion, 177
Reentrant, 31, 176-177, 179-180
Reference-location constant, 169
Reg field, 21
Register operand-addressing mode,
22, 145
Registers, 3, 16-21, 121-122
ACCUMULATOR (AX, AL, AH),
17-18, 36-38, 49, 51-52, 55,
57-58, 67-69
BASE (BX, BL, BH), 17-18, 23,
30,37
BASE POINTER (BP), 19, 31
CODE SEGMENT (CS), 15, 20-21,
34,73-76,81-85, 87, 138-141
COUNT (CX,CL, CH), 17-18,
64, 65-72
DATA (DX, DL, DH), 17-18,
37,49,52
DATA SEGMENT (DS), 15,20-21,
40, 138-141
DESTINATION INDEX (DI),
19, 23, 29, 65-72
EXTRA SEGMENT (ES), 15,
20-21, 40, 138-141
INSTRUCTION POINTER (IP),
17, 20, 34, 73-76, 81-85, 87, 92-93
SOURCE INDEX (SI), 19, 23, 29,
65-72
STACK POINTER (SP), 19, 34, 87
STACK SEGMENT (SS), 15,
20-21, 87-88, 138-141
Relational operators
in ASM-86, 130-131
in PL/M-86, 159
Relative offsets, 70-71, 74-76
Repeat prefix, 65-69
See also Prefixes
Reserved words
in ASM-86, 126-127
in PL/M-86, 155-156
Resource sharing, 90-91
RET instruction, 72-77, 142-143
RETURN statement, 175-176
ROL instruction, 63-64
ROM memory, 3, 27, 103-104, 108,
110
ROR instruction, 63-64
Rotating, 64, 96, 186

s field, 28

S0-S2 pin, 118

SAHF instruction, 42-43
SAL, SAR instructions, 63-64

204 The 8086 Primer

SBB instruction, 47-48
Scalar declaration, 165-166
Scanning, 67-68
SCAS instruction, 68, 148
Scope, 179-180
Seg field, 33
SEG operator, 135, 148
SEGMENT statement, 125, 138, 143
Segment
-definition statements, 138-142
-override prefix, 20-21, 27, 124,
138-141
See also Prefixes
registers, 15, 20-21, 138-141
See also Registers.
start address, 15, 40, 67, 122, 124,
129, 141-142
Segments, 8, 13-16, 19-20, 23-24, 25,
40-41, 122, 138-142
Selective statement, 161-163
Separate compilations, 181
SEX instruction, 52
SF flag. See Flags
Shifting, 62-64, 96, 186
SHL, SHR instructions, 63-64
Sl register, 19, 23, 29, 65-72
See also Registers
Sign extending, 6, 52
SIGN flag. See Flags
Sign magnitude, 5-6
Signed and unsigned numbers, 4-6,
44-45, 46, 47, 50, 52, 62-64, 70,
74-75,79, 82-83, 95
Simple DO block, 162
Simple variable, 29
Single stepping, 85-86, 96
SIZE operator, 136
Source code, 119-121
SOURCE INDEX register, 19, 23,
29, 65-72
See also Registers
SP register, 19, 34, 87
See also Registers
SS register, 15, 20-21, 87-88, 138-141
See also Registers
Stack, 7-8, 31, 34-35, 42-43, 76, 81,
84,87
STACK POINTER register, 19, 34, 87
See also Registers
Stack segment, 8, 15, 19, 20, 24
STACK SEGMENT register, 15, 20-21,
87-88, 138-141
See also Registers
Statements
in ASM-86, 131-148
in PL/M-86, 159-172
on the outermost level, 181

Status flags, 44-45, 47-49, 62, 77-80

See also Flags
STC, STD, STI instructions, 88
STOS instruction, 68-69, 148
String constant

in ASM-86, 126-128

in PL/M-86, 156, 158
String operations, 18, 19-20, 64-72, 87,

92, 134, 147-150, 186

Structure, 168-169

See also Record
SUB instruction, 47-48
Subordinate processor, §9-90
Subroutine. See Procedure
Subtraction. See Addition and

subtraction

Symbol-definition statements, 132
Symbolic names, 121-123
Synchronization, 89-91
Synthetic operators, 131, 136-137

Table, 133-134
See also Array
Termination statements, 143-144
TEST
instruction, 61-62
pin, 90
TF flag, 85-86
See also Flags
THIS operator, 137
Timing, 102-103
Token
in ASM-86, 125-128
in PL/M-86, 155-157
Traffic light example, 9, 110-111,
183-185
Transceiver, 101
Translator, 120
TRAP flag, 85-86
See also Flags
Two-out-of-five code, 38
Two’s complement. See Signed and
unsigned numbers
Typed praocedure, 176
TYPE operator, 135
Types
in ASM-86, 134-135
in PL/M-86, 158-159, 160, 166, 170

Unconditional transfers, 70-71, 72-77
Unsigned numbers. See Signed and
unsigned numbers

Index 205

v field, 64 X field, 89
Variable XCHG instruction, 36-37
in ASM-86, 132 XLAT instruction, 37-39, 134, 148
in PL/M-86, 157 XOR
‘instruction, 61, 130
w field, 22 operator, 129-130

WAIT instruction, 89-90, 93
WHILE statement, 165
See also DO blocks

Whole-number constant y field, 89
in ASM-86, 126-128
in PL/M-86, 156, 158
Word, 12-13 z field, 68
WORD type ZERO flag, 68-69, 71
in ASM-86, 134-135 See also Flags
in PL/M-86, 158 ZF flag, 68-69, 71

WR pin, 106-107, 110, 118 See also Flags

@ _ ISBN 0-8104-5165-4 "

5165-4
$8.95

THE 8086 PRIMER: An Introduction to Its Architecture,

System Design, and Programming

STEPHEN P. MORSE

Written by the man responsible for the architectural definition of the
8086 processor, this book covers all aspects of the 8086 micro-
processor. After a brief review of microprocessors, the architecture
of the 8086 is described in detail. Next, the 8086 is considered as a
circuit component, and the fundamentals of designing an 8086-
based computing system are described. Finally, methods of pro-
gramming the 8086 are discussed, and 8086 programming lan-
guages at both a low level (ASM-86) and a high level (PL/M-86) are
presented. Examples and illustrations are included so that The
8086 Primer can be useful to both the computer novice and the
computer professional.

Other Books of Interest . . .

MICROPROCESSOR DATA MANUAL

DAVE BURSKY

This manual will help you evaluate the microprocessors, microcom-
puters, and bit slices available from over thirty manufacturers. A
report on floppy-disk drives and other background information on
microprocessor selection and software are included. #5144-X,
paper, 128 pages

BASIC MICROPROCESSORS AND THE 6800

RON BISHOP

Provides two books in one: a basic guide to microprocessors for
the beginner, and a complete description of the M6800 system for
the engineer. Includes details of the hardware, addressing modes,
system configuration, programming examples, and a description
of the M6800 instruction set. #0758-2, paper, 272 pages

SOFTWARE ENGINEERING FOR MICROS: The Electrifying,
Streamlined, Blueprint, Speedcode Method

T. G. LEWIS

Written by the author of How to Profit from Your Personal Com-
puter, this book provides you with information on software quality,
software engineering, and structured programming that will enable
you to write more accurate error-free programs. Improves your
ability to write abstracted ideas and then code them into the nota-
tions of a particular machine. # 5166-2, paper, 168 pages

HAYDEN BOOK COMPANY, INC.
Rochelle Park, New Jersey

JSHON

al)]

NIAAVYH

So1S

v_

	ws0007
	ws10275
	ws10276
	ws10277
	ws10278
	ws10279
	ws10281
	ws10282
	ws10283
	ws10284
	ws10285
	ws10286
	ws10287
	ws10288
	ws10289
	ws10290
	ws10291
	ws10292
	ws10293
	ws10294
	ws10295
	ws10296
	ws10297
	ws10298
	ws10299
	ws10300
	ws10301
	ws10302
	ws10303
	ws10304
	ws10305
	ws10306
	ws10307
	ws10308
	ws10309
	ws10310
	ws10311
	ws10312
	ws10313
	ws10314
	ws10315
	ws10316
	ws10317
	ws10318
	ws10319
	ws10320
	ws10321
	ws10322
	ws10323
	ws10324
	ws10325
	ws10326
	ws10327
	ws10328
	ws10329
	ws10330
	ws10331
	ws10332
	ws10333
	ws10334
	ws10335
	ws10336
	ws10337
	ws10338
	ws10339
	ws10340
	ws10341
	ws10342
	ws10343
	ws10344
	ws10345
	ws10346
	ws10347
	ws10348
	ws10349
	ws10350
	ws10351
	ws10352
	ws10353
	ws10354
	ws10355
	ws10356
	ws10357
	ws10358
	ws10359
	ws10360
	ws10361
	ws10362
	ws10363
	ws10364
	ws10365
	ws10366
	ws10367
	ws10368
	ws10369
	ws10370
	ws10371
	ws10372
	ws10373
	ws10374
	ws10375
	ws10376
	ws10377
	ws10378
	ws10379
	ws10380
	ws10381
	ws10382
	ws10383
	ws10384
	ws10385
	ws10386
	ws10387
	ws10388
	ws10389
	ws10390
	ws10391
	ws10392
	ws10393
	ws10394
	ws10395
	ws10396
	ws10397
	ws10398
	ws10399
	ws10400
	ws10401
	ws10402
	ws10403
	ws10404
	ws10405
	ws10406
	ws10407
	ws10408
	ws10409
	ws10410
	ws10411
	ws10412
	ws10413
	ws10414
	ws10415
	ws10416
	ws10417
	ws10418
	ws10419
	ws10420
	ws10421
	ws10422
	ws10423
	ws10424
	ws10425
	ws10426
	ws10427
	ws10428
	ws10429
	ws10430
	ws10431
	ws10432
	ws10433
	ws10434
	ws10435
	ws10436
	ws10437
	ws10438
	ws10439
	ws10440
	ws10441
	ws10442
	ws10443
	ws10444
	ws10445
	ws10446
	ws10447
	ws10448
	ws10449
	ws10450
	ws10451
	ws10452
	ws10453
	ws10454
	ws10455
	ws10456
	ws10457
	ws10458
	ws10459
	ws10460
	ws10461
	ws10462
	ws10463
	ws10464
	ws10465
	ws10466
	ws10467
	ws10468
	ws10469
	ws10470
	ws10471
	ws10472
	ws10473
	ws10474
	ws10475
	ws10476
	ws10477
	ws10478
	ws10479
	ws10480
	ws10481
	ws10483
	ws10484
	ws10485
	ws10486
	ws10487
	ws10488
	ws10489
	z

